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Abstract

A double-double number is an unevaluated sum of two IEEE double precision numbers,
capable of representing at least 106 bits of significand. Similarly, a quad-double number is an
unevaluated sum of four IEEE double precision numbers, capable of representing at least 212 bits
of significand. Algorithms for various arithmetic operations (including the four basic operations
and various algebraic and transcendental operations) are presented. A C++ implementation of
these algorithms is also described, along with its C and Fortran interfaces. Performance of the
library is also discussed.
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1 Introduction

Multiprecision computation has a variety of application areas, such as pure mathematics, study of
mathematical constants, cryptography, and computational geometry. Because of this, many arbi-
trary precision algorithms and libraries have been developed using only the fixed precision arith-
metic. They can be divided into two groups based on the way precision numbers are represented.
Some libraries store numbers in a multiple-digit format, with a sequence of digits coupled with a sin-
gle exponent, such as the symbolic computation package Mathematica, Bailey’s MPFUN [2], Brent’s
MP [3] and GNU MP [7]. An alternative approach is to store numbers in a multiple-component for-
mat, where a number is expressed as unevaluated sums of ordinary floating-point words, each with
its own significand and exponent. Examples of this format include [6, 10, 11]. The multiple-digit
approach can represent a much larger range of numbers, whereas the multiple-component approach
has the advantage in speed.

We note that many applications would get full benefit from using merely a small multiple of
(such as twice or quadruple) the working precision, without the need for arbitrary precision. The
algorithms for this kind of “fixed” precision can be made significantly faster than those for arbitrary
precision. Bailey [1] and Briggs [4] have developed algorithms and software for “double-double”
precision, twice the double precision. They used the multiple-component format, where a double-
double number is represented as an unevaluated sum of a leading double and a trailing double.

In this paper we present the algorithms used in the qd library, which implements both double-
double and quad-double arithmetic. A quad-double number is an unevaluated sum of four IEEE
doubles. The quad-double number (a0, a1, a2, a3) represents the exact sum a = a0 + a1 + a2 + a3,
where a0 is the most sigficant component. We have designed and implemented algorithms for basic
arithmetic operations, as well as some algebraic and transcendental functions. We have performed
extensive correctness tests and compared the results with arbitrary precision package MPFUN. Our
quad-precision library is available at http://www.nersc.gov/~dhbailey/mpdist/mpdist.html.
Our quad-double library has been successfully integrated into a parallel vortex roll-up simulation
code; this is briefly described in [8].

The rest of the paper is organized as follows. Section 2 describes some basic properties of
IEEE floating point arithmetic and building blocks for our quad-double algorithms. In Section 3
we present the quad-double algorithms for basic operations, including renormization, addition,
multiplication and division. Section 4 and 5 present the algorithms for some algebraic operations
and transcendental functions. Section 6 describes some auxiliary functions. Section 7 briefly
describes our C++ library implementing the above algorithms. Section 8 presents the timing
results of the kernel operations on different architectures. Section 9 discusses future work.

2 Preliminaries

In this section, we present some basic properties and algorithms of IEEE floating point arithmetic
used in quad-double arithmetic. These results are based on Dekker [6], Knuth [9], Priest [10],
Shewchuk [11], and others. In fact, many of the algorithms and diagrams are directly taken from,
or based on, Shewchuk’s paper.

All basic arithmetics are assumed to be performed in IEEE double format, with round-to-even
rounding on ties. For any binary operator · ∈ {+,−,×, /}, we use fl(a · b) = a ⊙ b to denote the
floating point result of a · b, and define err(a · b) as a · b = fl(a · b) + err(a · b). Throughout this
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paper, ε = 2−53 is the machine epsilon for IEEE double precision numbers, and εqd = 2−211 is the
precision one expects for quad-double numbers.

Lemma 1. [11, p. 310] Let a and b be two p-bit floating point numbers such that |a| ≥ |b|. Then

|err(a+ b)| ≤ |b| ≤ |a|.

Lemma 2. [11, p. 311] Let a and b be two p-bit floating point numbers. Then err(a + b) =
(a+ b)− fl(a+ b) is representable as a p-bit floating point number.

Algorithm 3. [11, p. 312] The following algorithm computes s = fl(a + b) and e = err(a + b),
assuming |a| ≥ |b|.

Quick-Two-Sum(a, b)
1. s← a⊕ b
2. e← b⊖ (s⊖ a)
3. return (s, e)

Algorithm 4. [11, p. 314] The following algorithm computes s = fl(a+ b) and e = err(a+ b). This
algorithm uses three more floating point operations instead of a branch.

Two-Sum(a, b)
1. s← a⊕ b
2. v ← s⊖ a
3. e← (a⊖ (s⊖ v))⊕ (b⊖ v)
4. return (s, e)

Algorithm 5. [11, p. 325] The following algorithm splits a 53-bit IEEE double precision floating
point number into ahi and alo, each with 26 bits of significand, such that a = ahi + alo. ahi will
contain the first 26 bits, while alo will contain the lower 26 bits.

Split(a)
1. t← (227 + 1)⊗ a
2. ahi ← t⊖ (t⊖ a)
3. alo ← a⊖ ahi
4. return (ahi, alo)

Algorithm 6. [11, p. 326] The following algorithm computes p = fl(a× b) and e = err(a× b).

Two-Prod(a, b)
1. p← a⊗ b
2. (ahi, alo)← Split(a)
3. (bhi, blo)← Split(b)
4. e← ((ahi ⊗ bhi ⊖ p)⊕ ahi ⊗ blo ⊕ alo ⊗ bhi)⊕ alo ⊗ blo
5. return (p, e)

Some machines have a fused multiply-add instruction (FMA) that can evaluate expression such
as a × b ± c with a single rounding error. We can take advantage of this instruction to compute
exact product of two floating point numbers much faster. These machines include IBM Power series
(including the PowerPC), on which this simplification is tested.
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Figure 4: Normal IEEE double precision sum and product

Algorithm 7. The following algorithm computes p = fl(a × b) and e = err(a × b) on a machine
with a FMA instruction. Note that some compilers emit FMA instructions for a × b + c but not
for a× b− c; in this case, some sign adjustments must be made.

Two-Prod-FMA(a, b)
1. p← a⊗ b
2. e← fl(a× b− p)
3. return (p, e)

The algorithms presented are the basic building blocks of quad-double arithmetic, and are
represented in Figures 1, 2, and 3. Symbols for normal double precision sum and product are in
Figure 4.

3 Basic Operations

3.1 Renormalization

A quad-double number is an unevaluated sum of four IEEE double numbers. The quad-double
number (a0, a1, a2, a3) represents the exact sum a = a0 + a1 + a2 + a3. Note that for any given
representable number x, there can be many representations as an unevaluated sum of four doubles.
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Hence we require that the quadruple (a0, a1, a2, a3) to satisfy

|ai+1| ≤
1

2
ulp(ai)

for i = 0, 1, 2, with equality occurring only if ai = 0 or the last bit of ai is 0 (that is, round-to-even
is used in case of ties). Note that the first double a0 is a double-precision approximation to the
quad-double number a, accurate to almost half an ulp.

Lemma 8. For any quad-double number a = (a0, a1, a2, a3), the normalized representation is

unique.

Most of the algorithms described here produce an expansion that is not of canonical form –
often having overlapping bits. Therefore, a five-term expansion is produced, and then renormalized
to four components.

Algorithm 9. This renormalization procedure is a variant of Priest’s renormalization method [10,
p. 116]. The input is a five-term expansion with limited overlapping bits, with a0 being the most
significant component.

Renormalize(a0, a1, a2, a3, a4)
1. (s, t4)← Quick-Two-Sum(a3, a4)
2. (s, t3)← Quick-Two-Sum(a2, s)
3. (s, t2)← Quick-Two-Sum(a1, s)
4. (t0, t1)← Quick-Two-Sum(a0, s)

5. s← t0
6. k ← 0
7. for1 i← 1, 2, 3, 4
8. (s, e)← Quick-Two-Sum(s, ti)
9. if e 6= 0
10. bk ← s
11. s← e
12. k ← k + 1
13. end if
14. end for
15. return (b0, b1, b2, b3)

Necessary conditions for this renormalization algorithm to work correctly are, unfortunately,
not known. Priest proves that if the input expansion does not overlap by more than 51 bits,
then the algorithm works correctly. However, this condition is by no means necessary; that the
renormalization algorithm (Algorithm 9) works on all the expansions produced by the algorithms
below remains to be shown.

1In the implementation, this loop is unrolled to several if statements.
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3.2 Addition

3.2.1 Quad-Double + Double

The addition of a double precision number to a quad-double number is similar to Shewchuk’s
Grow-Expansion [11, p. 316], but the double precision number b is added to a quad-double
number a from most significant component first (rather than from least significant). This produces
a five-term expansion which is the exact result, which is then renormalized. See Figure 5.

Since the exact result is computed, then normalized to four components, this addition is accurate
to at least the first 212 bits of the result.

3.2.2 Quad-Double + Quad-Double

We have implemented two algorithms for addition. The first one is faster, but only satisfies the
weaker (Cray-style) error bound a⊕ b = (1 + δ1)a+ (1 + δ2)b where the magnitude of δ1 and δ2 is
bounded by εqd = 2−211.

Figure 6 best describes the first addition algorithm of two quad-double numbers. In the diagram,
there are three large boxes with three inputs to them. These are various Three-Sum boxes, and
their internals are shown in Figure 7.

Now for a few more lemmas.

Lemma 10. Let a and b be two double precision floating point numbers. Let M = max(|a|, |b|).
Then |fl(a+ b)| ≤ 2M , and consequently, |err(a+ b)| ≤ 1

2
ulp(2M) ≤ 2εM .

Lemma 11. Let x, y, and z be inputs to Three-Sum. Let u, v, w, r0, r1, and r2 be as indicated in

Figure 7. Let M = max(|x|, |y|, |z|). Then |r0| ≤ 4M , |r1| ≤ 8εM , and |r2| ≤ 8ε2M .

Proof. This follows from applying Lemma 10 to each of the three Two-Sum boxes. First Two-Sum

gives |u| ≤ 2M and |v| ≤ 2εM . Next Two-Sum (adding u and z) gives |r0| ≤ 4M and |w| ≤ 4εM .
Finally, the last Two-Sum gives the desired result.
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Note that the two other Three-Sums shown are simplification of the first Three-Sum, where
it only computes one or two components, instead of three; thus the same bounds apply.

The above bound is not at all tight; |r0| is bounded closer to 3M (or even |x|+ |y|+ |z|), and this
makes the bounds for r1 and r2 correspondingly smaller. However, this suffices for the following
lemma.

Lemma 12. The five-term expansion before the renormalization step in the quad-double addition

algorithm shown in Figure 6 errs from the true result by less than εqdM , where M = max(|a|, |b|).
Proof. This can be shown by judiciously applying Lemmas 10 and 11 to all the Two-Sums and
Three-Sums in Figure 6. See Appendix A for detailed proof.

Assuming that the renormalization step works (this remains to be proven), we can then obtain
the error bound

fl(a+ b) = (1 + δ1)a+ (1 + δ2)b with |δ1|, |δ2| ≤ εqd.

Note that the above algorithm for addition is particularly suited to modern processors with
instruction level parallelism, since the first four Two-Sums can be evaluated in parallel. Lack of
branches before the renormalization step also helps to keep the pipelines full.

Note that the above algorithm does not satisfy the IEEE-style error bound

fl(a+ b) = (1 + δ)(a+ b) with |δ| ≤ 2εqd or so.

To see this, let a = (u, v, w, x) and b = (−u,−v, y, z), where none of w, x, y, z overlaps and |w| >
|x| > |y| > |z|. Then the above algorithm produces c = (w, x, y, 0) instead of c = (w, x, y, z)
required by the stricter bound.

The second algorithm, due to J. Shewchuk and S. Boldo, computes the first four components
of the result correctly. Thus it satisfies more strict error bound

fl(a+ b) = (1 + δ)(a+ b) with |δ| ≤ 2εqd or so.
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However, it has a corresponding speed penalty; it runs significantly slower (factor of 2–3.5 slower).
The algorithm is similar to Shewchuk’s Fast-Expansion-Sum [11, p. 320], where it merge-

sorts the two expansions. To prevent components with only a few significant bits to be produced,
a double-length accumulator is used so that a component is output only if the inputs gets small
enough to not affect it.

Algorithm 13. Assuming that u, v is a two-term expansion, the following algorithm computes the
sum (u, v)+x, and outputs the significant component s if the remaining components contain more
than one double worth of significand. u and v are modified to represent the other two components
in the sum.

Double-Accumulate(u, v, x)
1. (s, v)← Two-Sum(v, x)
2. (s, u)← Two-Sum(u, s)
3. if u = 0
4. u← s
5. s← 0
6. end if
7. if v = 0
8. v ← u
9. u← s
10. s← 0
11. end if
12. return (s, u, v)

The accurate addition scheme is given by the following algorithm.

Algorithm 14. This algorithm computes the sum of two quad-double numbers a = (a0, a1, a2, a3)
and b = (b0, b1, b2, b3). Basically it merge-sorts the eight doubles, and performsDouble-Accumulate

until four components are obtained.

QD-Add-Accurate(a, b)
1. (x0, x1, . . . , x7)← Merge-Sort(a0, a1, a2, a3, b0, b1, b2, b3)
2. u← 0
3. v ← 0
4. k ← 0
5. i← 0
6. while k < 4 and i < 8 do
7. (s, u, v)← Double-Accumulate(u, v, xi)
8. if s 6= 0
9. ck ← s
10. k ← k + 1
11. end if
12. i← i+ 1
13. end while
14. if k < 2 then ck+1 ← v
15. if k < 3 then ck ← u
16. return Renormalize(c0, c1, c2, c3)

10



3.3 Subtraction

Subtraction a−b is implemented as the addition a+(−b), so it has the same algorithm and properties
as that of addition. To negate a quad-double number, we can just simply negate each component.
On a modern C++ compiler with inlining, the overhead is noticeable but not prohibitive (say 5%
or so).

3.4 Multiplication

Multiplication is basically done in a straightforward way, multiplying term by term and accumulat-
ing. Note that unlike addition, there are no possibilities of massive cancellation in multiplication,
so the following algorithms satisfy the IEEE style error bound a ⊗ b = (1 + δ)(a × b) where δ is
bounded by εqd.

3.4.1 Quad-Double × Double

Let a = (a0, a1, a2, a3) be a quad-double number, and let b be a double precision number. Then the
product is the sum of four terms, a0b+ a1b+ a2b+ a3b. Note that |a3| ≤ ε3|a0|, so |a3b| ≤ ε3|a0b|,
and thus only the first 53 bits of the product a3b need to be computed. The first three terms are
computed exactly using Two-Prod (or Two-Prod-FMA). All the terms are then accumulated
in a similar fashion as addition. See Figure 8.

3.4.2 Quad-Double × Quad-Double

Multiplication of two quad-double numbers becomes a bit complicated, but nevertheless follows
the same idea. Let a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3) be two quad-double numbers. Assume
(without loss of generality) that a and b are order 1. After multiplication, we need to accumulate
13 terms of order O(ε4) or higher.

a× b ≈ a0b0 O(1) term
+ a0b1 + a1b0 O(ε) terms
+ a0b2 + a1b1 + a2b0 O(ε2) terms
+ a0b3 + a1b2 + a2b1 + a3b0 O(ε3) terms
+ a1b3 + a2b2 + a3b1 O(ε4) terms

Note that smaller order terms (such as a2b3, which is O(ε5)) are not even computed, since they are
not needed to get the first 212 bits. The O(ε4) terms are computed using normal double precision
arithmetic, as only their first few bits are needed.

For i+ j ≤ 3, let (pij , qij) =Two-Prod(ai, bj). Then pij = O(εi+j) and qij = O(εi+j+1). Now
there are one term (p00) of order O(1), three (p01, p10, q00) of order O(ε), five (p02, p11, p20, q01,
q10) of order O(ε2), seven of order O(ε3), and seven of order O(ε4). Now we can start accumulating
all the terms by their order, starting with O(ε) terms (see Figure 9).

In the diagram, there are four different summation boxes. The first (topmost) one is Three-

Sum, same as the one in addition. The next three are, respectively, Six-Three-Sum (sums six
doubles and outputs the first three components), Nine-Two-Sum (sums nine doubles and outputs
the first two components), and Nine-One-Sum (just adds nine doubles using normal arithmetic).
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Figure 10: Six-Three-Sum

Six-Three-Sum computes the sum of six doubles to three double worth of accuracy (i.e., to
relative error of O(ε3)). This is done by dividing the inputs into two groups of three, and performing
Three-Sum on each group. Then the two sums are added together, in a manner similar to quad-
double addition. See Figure 10.

Nine-Two-Sum computes the sum of nine doubles to double-double accuracy. This is done by
pairing the inputs to create four double-double numbers and a single double precision number, and
performing addition of two double-double numbers recursively until one arrives at a double-double
output. The double-double addition (the large square box in the diagram) is the same as David
Bailey’s algorithm [1]. See Figure 11.

If one wishes to trade few bits of accuracy for speed, we don’t even need to compute the
O(ε4) terms; they can affect the first 212 bits only by carries during accumulation. In this case,
we can compute the O(ε3) terms using normal double precision arithmetic, thereby speeding up
multiplication considerably.
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Figure 11: Nine-Two-Sum
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Squaring a quad-double number can be done significantly faster since the number of terms that
needs to be accumulated can be reduced due to symmetry.

3.5 Division

Division is done by the familiar long division algorithm. Let a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3)
be quad-double numbers. We can first compute an approximate quotient q0 = a0/b0. We then
compute the remainder r = a − q0 × b, and compute the correction term q1 = r0/b0. We can
continue this process to obtain five terms, q0, q1, q2, q3, and q4. (only four are needed if few bits
of accuracy is not important).

Note that at each step, full quad-double multiplication and subtraction must be done since most
of the bits will be canceled when computing q3 and q4. The five-term (or four-term) expansion is
then renormalized to obtain the quad-double quotient.

4 Algebraic Operations

4.1 N-th Power

N -th Power computes an, given a quad-double number a and an integer n. This is simply done by
repeated squaring, borrowed from David Bailey [1].

4.2 Square Root

Square root computes
√
a given a quad-double number a. This is done with Newton iteration on

the function

f(x) =
1

x2
− a

which has the roots ±a−1/2. This gives rise to the iteration

xi+1 = xi +
xi(1− ax2i )

2
.

Note that the iteration does not require division of quad-double numbers. (Multiplication by 1/2
can be done component-wise.) Since Newton’s iteration is locally quadratically convergent, only
about two iterations are required if one starts out with double precision approximation x0 =

√
a0.

(In the implementation it is done three times.) After x = a−1/2 is computed, we perform a
multiplication to obtain

√
a = ax.

4.3 N-th Root

N -th Root computes n
√
a given a quad-double number a and an integer n. This is done again by

Newton’s iteration on the function

f(x) =
1

xn
− a

which has the roots a−1/n. This gives rise to the iteration

xi+1 = xi +
xi(1− axni )

n
.
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Three iterations are performed, although twice is almost sufficient. After x = a−1/n is computed,
we can invert to obtain a1/n = 1/x.

5 Transcendental Operations

5.1 Exponential

The classic Taylor-Maclaurin series is used to evaluate ex. Before using the Taylor series, the
argument is reduced by noting that

ekr+m log 2 = 2m(er)k,

where the integer m is chosen so that m log 2 is closest to x. This way, we can make |kr| ≤ 1
2
log 2 ≈

0.34657. Using k = 256, we have |r| ≤ 1
512

log 2 ≈ 0.001354. Now er can be evaluated using familiar
Taylor series. The argument reduction substantially speeds up the convergence of the series, as at
most 18 terms are need to be added in the Taylor series.

5.2 Logarithm

Since the Taylor series for logarithm converges much more slowly than the series for exponential,
instead we use Newton’s iteration to find the zero of the function f(x) = ex − a. This leads to the
iteration

xi+1 = xi + ae−xi − 1,

which is repeated three times.

5.3 Trigonometrics

Sine and cosine are computed using Taylor series after argument reduction. To compute sinx and
cosx, the argument x is first reduced modulo 2π, so that |x| ≤ π. Now noting that sin(y + kπ/2)
and cos(y + kπ/2) are of the form ± sin y or ± cos y for all integers k, we can reduce the argument
modulo π/2 so that we only need to compute sin y and cos y with |y| ≤ π/4.

Finally, write y = z+m(π/1024) where the integer m is chosen so that |z| ≤ π/2048 ≈ 0.001534.
Since |y| ≤ π/4, we can assume that |m| ≤ 256. By using a precomputed table of sin(mπ/1024)
and cos(mπ/1024), we note that

sin(z +mπ/1024) = sin z cos(mπ/1024) + cos z sin(mπ/1024)

and similarly for cos(z + mπ/1024). Using this argument reduction significantly increases the
convergence rate of sine, as at most 10 terms need be added.

Note that if both cosine and sine are needed, then one can compute the cosine using the formula

cosx =

√

1− sin2 x.

The values of sin(mπ/1024) and cos(mπ/1024) are precomputed by using arbitrary precision
package such as MPFUN [2] using the formula

sin

(

θ

2

)

=
1

2

√
2− 2 cos θ
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cos

(

θ

2

)

=
1

2

√
2 + 2 cos θ

Starting with cosπ = −1, we can recursively use the above formula to obtain sin(mπ/1024) and
cos(mπ/1024).

5.4 Inverse Trigonometrics

Inverse trigonometric function arctan is computed using Newton iteration on the function f(x) =
sinx− a.

5.5 Hyperbolic Functions

Hyperbolic sine and cosine are computed using

sinhx =
ex − e−x

2
coshx =

ex + e−x

2

However, when x is small (say |x| ≤ 0.01), the above formula for sinh becomes unstable, and the
Taylor series is used instead.

6 Miscellaneous Routines

6.1 Input / Output

Binary to decimal conversion of quad-double number x is done by determining the integer k such
that 1 ≤ |x10−k| < 10, and repeatedly extracting digits and multiplying by 10. To minimize error
accumulation, a table of accurately precomputed powers of 10 is used. This table is also used in
decimal to binary conversion.

6.2 Comparisons

Since quad-double numbers are fully renormalized after each operation, comparing two quad-double
number for equality can be done component-wise. Comparing the size can be done from most
significant component first, similar to dictionary ordering of English words. Comparison to zero
can be done just by checking the most significant word.

6.3 Random Number Generator

The quad-double random number generator produces a quad-double number in the range [0, 1),
uniformly distributed. This is done by choosing the first 212 bits randomly. A 31-bit system-
supplied random number generator is used to generate 31 bits at a time, this is repeated ⌈212/31⌉ =
7 times to get all 212 bits.

7 C++ Implementation

The quad-double library is implemented in ANSI C++, taking full advantage of operator / function
overloading and user-defined data structures. The library should compile fine with ANSI Standard
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compliant C++ compilers. Some of the test codes may not work with compilers lacking full support
for templates. Please see the files README and INSTALL for more details on the implementation and
build instructions.

Full C++ implementation of double-double library is included as a part of the quad-double
library, including full support for mixing three types: double, double-double, and quad-double.
In order to use the library, one must include the header file qd.h and link the code with the
library libqd.a. Quad-double variables are declared as qd real, while double-double variables are
declared as dd real.

A sample C++ program is given below.

#include <iostream>

#include <qd/qd_real.h>

using std::cout;

using std::endl;

int main() {

unsigned int oldcw;

fpu_fix_start(&oldcw); // see notes on x86 machines below.

qd_real a = "3.141592653589793238462643383279502884197169399375105820";

dd_real b = "2.249775724709369995957";

qd_real r;

r = sqrt(a * b + 1.0);

cout << " sqrt(a * b + 1) = " << r << endl;

fpu_fix_end(&oldcw); // see notes on x86 machines below.

return 0;

}

Note that strings must be used to assign to a quad-double (or double-double) numbers; otherwise
the double precision approximation is assigned. For example, a = 0.1 does not assign quad-double
precision 0.1, but rather a double precision number 0.1. Instead, use a = "0.1".

Common constants such as π, π/2, π/4, e, log 2 are provided as qd real:: pi, qd real:: pi2,
qd real:: pi4, qd real:: e, and qd real:: log2. These were computed using an arbitrary pre-
cision package (MPFUN++ [5]), and therefore are accurate to the last bit.
Note on Intel x86 Processors. The algorithms in this library assume IEEE double precision
floating point arithmetic. Since Intel x86 processors have extended (80-bit) floating point registers,
the round-to-double flag must be enabled in the control word of the FPU for this library to function
properly under x86 processors. The function fpu fix start turns on the round-to-double bit in
the FPU control word, while fpu fix end will restore the original state.
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Operation
Pentium II
400MHz

Linux 2.2.16

UltraSparc
333 MHz
SunOS 5.7

PowerPC 750
266 MHz

Linux 2.2.15

Power3
200 MHz
AIX 3.4

Quad-double

add 0.583 0.580 0.868 0.710
accurate add 1.280 2.464 2.468 1.551
mul 1.965 1.153 1.744 1.131
sloppy mul 1.016 0.860 1.177 0.875
div 5.267 6.440 8.210 6.699
sloppy div 4.080 4.163 6.200 4.979
sqrt 23.646 15.003 21.415 16.174

MPFUN

add 5.729 5.362 — 4.651
mul 7.624 7.630 — 5.837
div 10.102 10.164 — 9.180

Table 1: Performance of some Quad-Double algorithms on several machines. All measurements are
in microseconds. We include the performance of MPFUN [2] as a comparison. Note, we do not
have the MPFUN measurements on the PowerPC, because we do not have a Fortran-90 compiler.

8 Performance

Performance of various operations on quad-double numbers on a variety of machines are presented
in Table 8. The tested machines are

• Intel Pentium II, 400 MHz, Linux 2.2.16, g++ 2.95.2 compiler, with -O3 -funroll-loops

-finline-functions -mcpu=i686 -march=i686 optimizations.

• Sun UltraSparc 333 MHz, SunOS 5.7, Sun CC 5.0 compiler, with -xO5 -native optimiza-
tions.

• PowerPC 750 (Apple G3), 266 MHz, Linux 2.2.15, g++ 2.95.2 compiler, with -O3 -funroll-

loops -finline-functions optimizations.

• IBM RS/6000 Power3, 200 MHz, AIX 3.4, IBM xlC compiler, with -O3 -qarch=pwr3 -qtune

=pwr3 -qstrict optimizations.

Note: For some reason, GNU C++ compiler (g++) has a terrible time optimizing the code for
multiplication; it runs more than 15 times slower than the code compiled by Sun’s CC compiler.

Most of the routines runs noticeably faster if implemented in C, it seems that C++ operator
overloading has some overhead associated with it – most notably excessive copying of quad-double
numbers. This occurs because operator overloading does not account for where the result is going
to be placed. For example, for the code

c = a + b;

the C++ compiler often emits the code equivalent to
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qd_real temp;

temp = operator+(a, b); // Addition

operator=(c, temp); // Copy result to c

In C, this copying does not happen, as one would just write

c_qd_add(a, b, c); // Put (a+b) into c

where the addition routine knows where to put the result directly. This problem is somewhat
alleviated by inlining, but not completely eliminated. There are techniques to avoid these kinds
of copying [12], but they have their own overheads associated with them and is not practical for
quad-double with only 32 bytes of data1.

9 Future Work

Currently, the basic routines do not have a full correctness proof. The correctness of these routines
rely on the fact that renormalization step works; Priest proves that it does work if the input does
not overlap by 51 bits and no three components overlap at a single bit. Whether such overlap can
occur in any of these algorithm needs to be proved.

There are improvements due in the remainder operator, which computes a − round(a/b) × b,
given quad-double numbers a and b. Currently, the library does the näıve method of just divide,
round, multiply, and subtract. This leads to loss of accuracy when a is large compared to b. Since
this routine is used in argument reduction for exponentials, logarithms and trigonometrics, a fix is
needed.

A natural extention of this work is to extend the precision beyond quad-double. Algorithms for
quad-double additions and multiplication can be extended to higher precisions, however, with more
components, asymptotically faster algorithm due to S. Boldo and J. Shewchuk may be preferrable
(i.e. Algorithm 14). One limitation these higher precision expansions have is the limited exponent
range – same as that of double. Hence the maximum precision is about 2000 bits (39 components),
and this occurs only if the first component is near overflow and the last near underflow.

10 Acknowledgements

We thank Jonathan Shewchuk, Sylvie Boldo, and James Demmel for constructive discussions on
various basic algorithms. In particular, the accurate version of addition algorithm is due to S.
Boldo and J. Shewchuk. Problems with remainder was pointed out by J.Demmel.

1These techniques are feasible, for larger data structures, such as for much higher precision arithmetics, where
copying of data becomes time consuming.

21



A Proof of Quad-Double Addition Error Bound (Lemma 12)

Lemma 12. The five-term expansion before the renormalization step in the quad-double addition

algorithm shown in Figure 6 errs from the true result by less than εqdM , where M = max(|a|, |b|).

Proof. The proof is done by applying Lemmas 10 and 11 to each of Two-Sums and Three-Sums.
Let e0, e1, e2, e3, t1, t2, t3, x0, x1, x2, x3, x4, u, v, w, z, f1, f2, and f3 be as shown in Figure 12.

We need to show that the five-term expansion (x0, x1, x2, x3, x4) errs from the true result by
less than εqdM , where M = max(|a0|, |b0|). Note that the only place that any error is introduced is
in Three-Sum 7 and Three-Sum 8, where lower order terms f1, f2, and f3 are discarded. Hence
it suffices to show |f1|+ |f2|+ |f3| ≤ εqdM .
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Figure 12: Quad-Double + Quad-Double

First note that |a1| ≤ εM , |a2| ≤ ε2M ,and |a3| ≤ ε3M , since the input expansions are assumed
to be normalized. Similar inequalities applies for expansion b. Applying Lemma 10 to Two-Sums
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1, 2, 3, 4, we obtain
|x0| ≤ 2M |e0| ≤ 2εM
|t1| ≤ 2εM |e1| ≤ 2ε2M
|t2| ≤ 2ε2M |e2| ≤ 2ε3M
|t3| ≤ 2ε3M |e3| ≤ 2ε4M.

Now we can apply Lemma 10 to Two-Sum 5, to obtain |x1| ≤ 4εM and |u| ≤ 4ε2M . Then we
apply Lemma 11 to Three-Sum 6 to obtain

|x2| ≤ 16ε2M
|w| ≤ 32ε3M
|v| ≤ 32ε4M.

Applying Lemma 11 to Three-Sum 7, we have

|x3| ≤ 128ε3M
|z| ≤ 256ε4M
|f1| ≤ 256ε5M.

Finally we apply Lemma 11 again to Three-Sum 8 to get

|x4| ≤ 1024ε4M
|f2| ≤ 2048ε5M
|f3| ≤ 2048ε6M.

Thus we have

|f1|+ |f2|+ |f3| ≤ 256ε5M + 2048ε5M + 2048ε6M ≤ 2305ε5M ≤ εqdM

as claimed.
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