
CM
The SML/NJ Compilation and Library Manager

(for SML/NJ version 110.84 and later)

User Manual

Matthias Blume
matthias_blume@mac.com

With edits by John Reppy
jhr@cs.chicago.edu

Revised: June 2022

Copyright ©2018. Fellowship of SML/NJ. All rights reserved.

This document was written with support from NSF grant CNS-0454136, “CRI: Standard ML Software Infrastructure.”

Contents

1 Introduction 6

2 The CM model 8

2.1 Basic philosophy . 8

2.2 Description files . 8

2.3 Invoking CM . 9

2.4 Members of a library . 9

2.5 Name visibility . 10

2.6 Library components (groups) . 10

2.7 Multiple occurences of the same member . 12

2.8 Stable libraries . 12

2.9 Top-level groups . 12

3 Naming objects in the file system 13

3.1 Motivation . 13

3.2 Basic rules . 13

3.3 Anchor environments . 14

3.4 Anchor configuration . 14

3.5 When to use anchor environments . 15

4 Export lists 17

5 Using CM 18

5.1 Structure CM . 18

5.1.1 Compiling . 18

5.1.2 Linking and execution . 18

5.1.3 Registers . 19

5.1.4 Path anchors . 20

5.1.5 Setting CM variables . 20

5.1.6 Library registry . 21

2

5.1.7 Internal state . 21

5.1.8 Compile servers . 22

5.1.9 Plug-ins . 22

5.1.10 Support for stand-alone programs . 23

5.1.11 Finding all sources . 23

5.2 The autoloader . 24

5.3 Sharing of state . 24

5.3.1 Sharing annotations . 25

5.3.2 Sharing with the interactive system . 25

6 Version numbers 26

6.1 How versions are compared . 26

6.2 Version checking . 26

7 Member classes and tools 27

7.1 Tool parameters . 27

7.1.1 Parameters for class sml . 28

7.1.2 Parameters for class cm . 29

7.1.3 Parameters for classes tool and suffix . 29

7.2 Built-in tools . 29

7.2.1 Program generators . 29

7.2.2 Shell . 30

7.2.3 Make . 31

7.2.4 Noweb . 31

7.2.5 Dir . 32

8 Conditional compilation 35

8.1 CM variables . 35

8.2 Querying exported definitions . 36

8.3 Explicit errors . 36

9 Access control 37

10 The pervasive environment 38

11 Files 39

11.1 Time stamps . 39

11.2 Index files . 40

3

12 Extending the tool set 41

12.1 Adding simple shell-command tools . 41

12.2 Adding other classes . 42

12.2.1 Filename abstractions . 43

12.2.2 Adding a class and its rule . 43

12.2.3 Reporting errors from tools . 45

12.2.4 Adding a classifier . 45

12.2.5 Miscellaneous . 46

12.3 Plug-in Tools . 47

12.3.1 Automatically loaded, global plug-in tools . 47

12.3.2 Explicitly loaded, local plug-in tools . 48

12.3.3 Locally declared suffixes . 48

13 Parallel and distributed compilation 49

13.1 Pathname protocol encoding . 50

13.2 Parallel bootstrap compilation . 51

14 The sml command line 52

14.1 File arguments . 52

14.2 Mode-switching flags . 52

14.3 Defining and undefining CM preprocessor symbols . 52

14.4 Control Parameters . 53

15 Auxiliary scripts 54

15.1 Building stand-alone programs . 54

15.1.1 Bootstrapping: How ml-build works . 54

15.2 Generating dependencies for make . 54

16 Example: Dynamic linking 56

17 Some history 58

A CM description file syntax 60

A.1 Lexical Analysis . 60

A.2 EBNF for preprocessor expressions . 61

A.3 EBNF for tool options . 61

A.4 EBNF for export lists . 62

A.5 EBNF for member lists . 62

A.6 EBNF for library descriptions . 62

A.7 EBNF for library component descriptions (group descriptions) . 62

4

B Full signature of structure CM 64

C Listing of all pre-defined CM identifiers 66

D Listing of all CM-specific environment variables 67

E Listing of all class names and their tools 68

F Available libraries 69

F.1 Libraries for general programming . 69

F.2 Libraries for controlling SML/NJ’s operation . 70

F.3 Libraries for SML/NJ compiler hackers . 70

F.4 Internal libraries . 71

G Exports of library $smlnj/cm/tools.cm 72

G.1 The public signature of structure Tools . 72

G.2 The public signature of structure Version . 74

G.3 The public signature of structure Sharing . 74

H Change history 75

5

Chapter 1

Introduction

This manual describes a new implementation of CM, the “Compilation and Library Manager” for Standard ML of New
Jersey (SML/NJ). Like its previous incarnation, CM is in charge of managing separate compilation and facilitates access
to stable libraries.

Most programming projects that use CM are composed of separate libraries. Libraries are collections of ML compilation
units. These collections themselves can be internally sub-structured using CM’s notion of library components.

CM offers the following features to the programmer:

• separate compilation and type-safe linking [AM94]

• hierarchical modularity [BA99]

• automatic dependency analysis [Blu99]

• optimization of the compilation process via cutoff-recompilation techniques [ATW94]

• management of program libraries, distinguishing between libraries that are under development and libraries that are
stable

• operating-system independent file naming (with optional escape to native file names)

• adaptability to changing environments using the path anchor facility

• an extensible set of auxiliary tools that lets CM seemlessly interoperate with other program generators, source-
control systems, literate-programming facilities, or shell-scripts

• checked version numbers on libraries

• (still rudimentary) support for access control

• access to libraries from the interactive toplevel loop

• sharing of code that is common to several programs or code that is common to both user programs and SML/NJ
itself

• management of (the sharing of) link-time state

• conditional compilation (at compilation unit granularity)

• support for parallel and distributed compilation

• facilities for generating stand-alone ML programs

• a mechanism for deriving dependency information for use by other compilation managers (e.g., Unix’ make)

6

• an API to access all these facilities at SML/NJ’s interactive prompt or from user programs

CM puts emphasis on working with libraries. This contrasts with previous compilation managers for SML/NJ where the
focus was on compilation management while libraries were added as an afterthought.

7

Chapter 2

The CM model

2.1 Basic philosophy

The venerable make of Unix [Fel79] is target-oriented: one starts with a main goal (target) and applies production rules
(with associated actions such as invoking a compiler) until no more rules are applicable. The leaves of the resulting
derivation tree1 can be seen as defining the set of source files that are used to make the main target.

CM, on the other hand, is largely source-oriented: Whereas with make one specifies the tree and lets the program derive
the leaves, with CM one specifies the leaves and lets the program derive the tree. Thus, the programmer writes down a
list of sources, and CM will calculate and then execute a series of steps to make the corresponding program. In make
terminology, this resulting program acts as the “main goal”, but under CM it does not need to be explicitly named. In fact,
since there typically is no corresponding single file system object for it, a “natural” name does not even exist.

For simple projects it is literally true that all the programmer has to do is tell CM about the set of sources: a description
file lists little more than the names of participating ML source files. However, larger projects typically benefit from a
hierarchical structuring. This can be achieved by grouping ML source files into separate libraries and library components.
Dependencies between such libraries have to be specified explicitly and must form an acyclic directed graph (DAG).

CM’s own semantics, particularly its dependency analysis, interact with the ML language in such a way that for any well-
formed project there will be exactly one possible interpretation as far as static semantics are concerned. Only well-formed
projects are accepted by CM; projects that are not well-formed will cause error messages. (Well-formedness is defined to
enforce a unique definition-use relation for ML definitions [Blu99].)

2.2 Description files

Technically, a CM library is a (possibly empty) collection of ML source files and may also contain references to other
libraries. Each library comes with an export interface which specifies the set of all toplevel-defined symbols of the library
that shall be exported to its clients (see Chapter 4). A library is described by the contents of its description file.2

Example:

Library
signature BAR
structure Foo

is
bar.sig
foo.sml
helper.sml

1“Tree” is figurative speech here since the derivation really yields a DAG.
2The description file may also contain references to input files for tools like ml-lex or ml-yacc that produce ML source files. See Chapter 7.

8

$/basis.cm
$/smlnj-lib.cm

This library exports two definitions, one for a structure named Foo and one for a signature named BAR. The specification
for such exports appear between the keywords Library and is. The members of the library are specified after the
keyword is. Here we have three ML source files (bar.sig, foo.sml, and helper.sml) as well as references to two
external libraries ($/basis.cm and $/smlnj-lib.cm). The entry $/basis.cm typically denotes the description
file for the Standard ML Basis Library [GR04]; most programs will want to list it in their own description file(s). The
other library in this example ($/smlnj-lib.cm) is a library of data structures and algorithms that comes bundled with
SML/NJ.

2.3 Invoking CM

Once a library has been set up as shown in the example above, one can load it into a running interactive session by invoking
function CM.make. If the name of the library’s description file is, say, fb.cm, then one would type

CM.make "fb.cm";

at SML/NJ’s interactive prompt. This will cause CM to

1. parse the description file fb.cm,

2. locate all its sources and all its sub-libraries,

3. calculate the dependency graph,

4. issue warnings and errors (and skip the remaining steps) if necessary,

5. compile those sources for which that is required,

6. execute module initialization code,

7. and augment the toplevel environment with bindings for exported symbols, i.e., in our example for signature
BAR and structure Foo.

CM does not compile sources that are not “reachable” from the library’s exports. For every other source, it will avoid
recompilation if all of the following is true:

• The binfile for the source exists.

• The binfile has the same time stamp as the source.

• The current compilation environment for the source is precisely the same as the compilation environment that was
in effect when the binfile was produced.

2.4 Members of a library

Members of a library do not have to be listed in any particular order since CM will automatically calculate the dependency
graph. Some minor restrictions on the source language are necessary to make this work:

1. All top-level definitions must be module definitions (structures, signatures, functors, or functor signatures). In other
words, there can be no top-level type-, value-, or infix-definitions.

9

2. For a given symbol, there can be at most one ML source file per library (or—more correctly—one file per library
component; see Section 2.6) that defines the symbol at top level.

3. If more than one of the listed libraries or components is exporting the same symbol, then the definition (i.e., the ML
source file that actually defines the symbol) must be identical in all cases.

4. The use of ML’s open construct is not permitted at the top level of ML files compiled by CM. (The use is still ok at
the interactive top level.)

Note that these rules do not require the exports of imported libraries to be distinct from the exports of ML source files in
the current library. If an ML source file f re-defines a name n that is also imported from library l, then the disambiguating
rule is that the definition from f takes precedence over that from l in all sources except f itself. Free occurences of n in
f refer to l’s definition. This rule makes it possible to easily write code for exporting an “augmented” version of some
module. Example:

structure A = struct (* defines augmented A *)
open A (* refers to imported A *)
fun f x = B.f x + C.g (x + 1)

end

Rule 3 may come as a bit of a surprise considering that each ML source file can be a member of at most one library
(see Section 2.7). However, it is indeed possible for two libraries to (re-)export the “same” definition provided they both
import that definition from a third library. For example, let us assume that a.cm exports a structure X which was defined
in x.sml—one of a.cm’s members. Now, if both b.cm and c.cm re-export that same structure X after importing it
from a.cm, it is legal for a fourth library d.cm to import from both b.cm and c.cm.

The full syntax for library description files also includes provisions for a simple “conditional compilation” facility (see
Chapter 8), for access control (see Chapter 9), and it accepts ML-style nestable comments delimited by (* and *).

2.5 Name visibility

In general, all definitions exported from members (i.e., ML source files, sublibraries, and components) of a library are
visible in all other ML source files of that library. The source code in those source files can refer to them directly without
further qualification. Here, “exported” means either a top-level definition within an ML source file or a definition listed in
a sublibrary’s export list.

If a library is structured into library components using groups (see Section 2.6), then—as far as name visibility is
concerned—each component (group) is treated like a separate library.

Cyclic dependencies among libraries, library components, or ML source files within a library are detected and flagged as
errors.

2.6 Library components (groups)

CM’s group model eliminates a whole class of potential naming problems by providing control over name spaces for
program linkage. The group model in full generality sometimes requires bindings to be renamed at the time of import. As
has been described separately [BA99], in the case of ML this can also be achieved using “administative” libaries, which
is why CM can get away with not providing more direct support for renaming.

However, under CM, the term “library” does not only mean namespace management (as it would from the point of view
of the pure group model) but also refers to actual file system objects (e.g., CM description files and stable library files). It
would be inconvenient if name resolution problems would result in a proliferation of additional library files. Therefore,
CM also provides the notion of library components (“groups”). Name resolution for groups works like name resolution
for entire libraries, but grouping is entirely internal to each library.

10

When a library is stabilized (via CM.stabilize – see Section 2.8), the entire library is compiled to a single file (hence
groups do not result in separate stable files).

During development, each group has its own description file which will be referred to by the surrounding library or by
other groups of that library. The syntax of group description files is the same as that of library description files with the
following exceptions:

• The initial keyword Library is replaced with Group. It is followed by the name of the surrounding library’s
description file in parentheses.

• The export list can be left empty, in which case CM will provide a default export list: all exports from ML source
files plus all exports from subcomponents of the component. from other libraries will not be re-exported in this
case.3 (Notice that an export list that is not syntactically empty but which effectively contains zero symbols because
of conditional compilation—see Chapter 8—does not count as being “left empty” in the above sense. Instead, the
result would be an almost certainly useless component with truly no exports.)

• There are some small restrictions on access control specifications (see Chapter 9).

As an example, let us assume that foo-utils.cm contains the following text:

Group (foo-lib.cm)
is

set-util.sml
map-util.sml
$/basis.cm

This description defines group foo-utils.cm to have the following properties:

• it is a component of library foo-lib.cm (meaning that only foo-lib.cm itself or other groups thereof may list
foo-utils.cm as one of their members)

• set-utils.sml and map-util.sml are ML source files belonging to this component

• exports from the Standard Basis Library are available when compiling these ML source files

• since the export list has been left blank, the only (implicitly specified) exports of this component are the top-level
definitions in its ML source files

With this, the library description file foo-lib.cm could list foo-utils.cm as one of its members:

Library
signature FOO
structure Foo

is
foo.sig
foo.sml
foo-utils.cm
$/basis.cm

No harm is done if foo-lib.cm does not actually mention foo-utils.cm. In this case it could be that
foo-utils.cm is mentioned indirectly via a chain of other components of foo-lib.cm. The other possibility is
that it is not mentioned at all (in which case CM would never know about it, so it cannot complain).

3This default can be spelled out as source(-) group(-). See Chapter 4.

11

2.7 Multiple occurences of the same member

The following rules apply to multiple occurences of the same ML source file, the same library, or the same group within
a program:

• Within the same description file, each member can be specified at most once.

• Libraries can be referred to freely from as many other groups or libraries as the programmer desires.

• A group cannot be used from outside the uniquely defined library (as specified in its description file) of which it is
a component. However, within that library it can be referred to from arbitrarily many other groups.

• The same ML source file cannot appear more than once. If an ML source file is to be referred to by multiple clients,
it must first be “wrapped” into a library (or—if all references are from within the same library—a group).

2.8 Stable libraries

CM distinguishes between libraries that are under development and libraries that are stable. A stable library is created by
a call of CM.stabilize (see Section 5.1.1).

Access to stable libraries is subject to less internal consistency-checking and touches far fewer file-system objects. There-
fore, it is typically more efficient. Stable libraries play an additional semantic role in the context of access control (see
Chapter 9).

From the client program’s point of view, using a stable library is completely transparent. When referring to a library—
regardless of whether it is under development or stable—one always uses the name of the library’s description file. CM
will check whether there is a stable version of the library and provided that is the case use it. This means that in the
presence of a stable version, the library’s actual description file does not have to physically exists (even though its name
is used by CM to find the corresponding stable file).

2.9 Top-level groups

Mainly to facilitate some superficial backward-compatibility, CM also allows groups to appear at top level, i.e., outside
of any library. Such groups must omit the parenthetical library specification and then cannot also be used within libraries.
One could think of the top level itself as a “virtual unnamed library” whose components are these top-level groups.

12

Chapter 3

Naming objects in the file system

3.1 Motivation

The main difficulty with file naming lies in the fact that files or even whole directories may move after CM has already
partially (but not fully) processed them. For example, this happens when the autoloader (see Section 5.2) has been invoked
and the session (including CM’s internal state) is then frozen (i.e., saved to a file) via SMLofNJ.exportML.

CM’s configurable path anchor mechanism enables it to resume such a session even when operating in a different en-
vironment, perhaps on a different machine with different file systems mounted, or a different location of the SML/NJ
installation. Evaluation of path anchors always takes place as late as possible, and CM will re-evaluate path anchors as
this becomes necessary due to changes to their configuration.

3.2 Basic rules

CM uses its own “standard” syntax for pathnames which for the most part happens to be the same as the one used by most
Unix-like systems:

• Path name components are separated by “/”.

• Special components “.” and “..” denote current and previous directory, respectively.

• Paths beginning with “/” are considered absolute.

• Other paths are relative unless they start with “$”.

There is an important third form of standard paths: anchored paths. Anchored paths always start with “$”.

Since this standard syntax does not cover system-specific aspects such as volume names, it is also possible to revert to
“native” syntax by enclosing a path name in double-quotes. Of course, description files that use path names in native
syntax are not portable across operating systems.

Absolute pathnames are resolved in the usual manner specific to the operating system. However, it is advisable to avoid
absolute pathnames because they are certain to “break” if the corresponding file moves to a different location.

Relative pathnames that occur in some CM description file whose name is path/file.cm will be resolved relative to
path, i.e., relative to the directory that contains the description file.

13

Relative pathnames that have been entered interactively, usually as an argument to one of CM’s interface functions,
will be resolved in the OS-specific manner, i.e., relative to the current working directory. However, notice that some
of CM’s operations (see Section 5.2—autoload) will be executed lazily and, thus, can occur interleaved with arbitary
other operations—including changes of the working directory. This is handled by CM in such a way that it appears
as if all path derived from an interactive relative path p had been completely resolved at the time p was entered. As
a result, two names specified using identical strings but at different times when different working directories were
in effect will be kept apart and continue to refer to their respective original file system locations.

Anchored paths consist of an anchor name (of non-zero length) and a non-empty list of additional arcs. The name is
enclosed by the path’s leading $ on the left and the path’s first / on the right. The list of arcs follows the first /. As
with all standard paths, the arcs themselves are also separated by /. An error is signalled if the anchor name is not
known to CM. If a is a know anchor name currently bound to some directory name d, then the standard path $a/p
(where p is a list of arcs) refers to d/p. The frequently occuring case where a coincides with the first arc of p can
be abbreviated as $/p.

3.3 Anchor environments

Anchor names are resolved in the anchor environment that is in effect at the time the anchor is read.

The basis for all anchor environments is the root environment. Conceptually, the root environments is a fixed mapping
that binds every possible anchor to a mutable location. The location can store a native directory name or can be marked
“undefined”. Most locations initially start out undefined. The contents of each location is configurable (see Section 3.4).

At the time a CM description file a.cm refers to another library’s or library component’s description file b.cm, it can
augment the current anchor environment with new bindings. The new bindings are in effect while b.cm (including any
description files it mentions!) is being processed. If a new binding binds an anchor name that was already bound in the
current environment1, then the old binding is being hidden. The effect is scoping for anchor names.

Using CM’s tool parameter mechanism (see Section 7.1), a new binding is specified as a pair of anchor name and anchor
value. The value has the form of another path name (standard or native). Example:

a.cm (bind:(anchor:lib value:$mystuff/a-lib)
bind:(anchor:support value:$lib)
bind:(anchor:utils value:/home/bob/stuff/ML/utils))

As shown in this example, it is perfectly legal for the specification of the value to involve the use of another anchor. That
anchor will be resolved in the original anchor environment. Thus, a path anchored at $lib in a.cmwill be resolved using
the binding for $mystuff that is currently in effect. The point here is that a re-configuration of the root environment
that affects $mystuff now also affects how $lib is resolved as it occurs within a.cm.

CM processes the list of bind-directives “in parallel.” This means that the anchor $support will refer to the original
meaning of $lib and is not being bound to $mystuff/a-lib/asupport.

The example also demonstrates that value-paths can be single anchors. In other words, the restriction that there has to
be at least one arc after the anchor does not apply here. This makes it possible to “rename” anchors, or, to put it more
precisely, for one anchor name to be established as an “alias” for another anchor name.

3.4 Anchor configuration

Anchor configuration is concerned with the values that are stored in the root anchor environment. At startup time, the
root environment is initialized by reading two configuration files: an installation-specific one and a user-specific one.
After that, the contents of root locations can be maintained using CM’s interface functions CM.Anchor.anchor and
CM.Anchor.reset (see Section 5.1.4).

1which is technically always the case given our explanation of the root environment

14

Although there is a hard-wired default for the installation-specific configuration file2, this default in rarely being used.
Instead, in a typical installation of SML/NJ the default will be a file r/lib/pathconfig where r is the root directory
into which SML/NJ had been installed. (The installation procedure establishes this new default by setting the environment
variable CM PATHCONFIG at the time it produces the heap image for the interactive system.) The user can specify a new
location at startup time using the same environment variable CM PATHCONFIG.

The default location of the user-specific configuration file is .smlnj-pathconfig in the user’s home directory (which
must be given by the HOME environment variable). At startup time, this default can be overridden by a fixed location
which must be given as the value of the environment variable CM LOCAL PATHCONFIG.

The syntax of all configuration files is identical. Lines are processed from top to bottom. White space divides lines into
tokens.

• A line with exactly two tokens associates an anchor (the first token) with a directory in native syntax (the second
token). Neither anchor nor directory name may contain white space and the anchor should not contain a /. If the
directory name is a relative name, then it will be expanded by prepending the name of the directory that contains
the configuration file.

• A line containing exactly one token that is the name of an anchor cancels any existing association of that anchor
with a directory.

• A line with a single token that consists of a single minus sign - cancels all existing anchors. This typically makes
sense only at the beginning of the user-specific configuration file and erases any settings that were made by the
installation-specific configuration file.

• Lines with no token (i.e., empty lines) will be silently ignored.

• Any other line is considered malformed and will cause a warning but will otherwise be ignored.

3.5 When to use anchor environments

The following sample scenario for using anchor environments will provide some background on the reasons that led to
the inclusion of this feature into CM. In short, anchor environments will typically be used to disambiguate between two
or more different uses of the same anchor name. This is something that the root environment alone (i.e., a fixed mapping
from anchors to directory names) cannot do because the root environment binds each anchor to at most one “meaning.”

Suppose you are developing a project P.cm for which you obtain two utility libraries A.cm and B.cm from other pro-
grammers. Unfortunately, since these programmers did not coordinate their work (perhaps because they did not even
know of each other), both A.cm and B.cm each uses its own helper library that is expected to be found under the name
$H/H.cm.

Your task is to put references to A.cm and B.cm into P.cm so that everything “works.” Now, mentioning A.cm and
B.cm is easy enough, but if you do so without special precautions, you arrive at a situation where both helpers end up
being the same—no matter how you configure the binding for anchor $H.

If you have access to the description files for A.cm and B.cm, you could work around this problem by changing the
reference to $H in one of them into something else. Remember, however, that in general you may not be able to do this
because it could be that either you do not have permissions to change the description files, or you might not even have any
description file that you could change because the two libraries were given to you in “stable” form.

The correct solution is to add bind:-directives where you use A.cm and B.cm in your own description file P.cm. For
example, you could write there:

A.cm (bind:(anchor:H value:$AH))
B.cm (bind:(anchor:H value:$BH))

2which happens to be /usr/lib/smlnj-pathconfig

15

With this, the two uses of anchor $H will occur in different local anchor environments. In the example as shown, the
first such local environment effectively renames $H into $AH while the second renames $H into $BH. Thus, you can put
independent bindings for $AH and $HB into your root configuration, these independent bindings will propagate to the
respective local environment, and the two uses of $H will be resolved differently—as was intended.

Another situation where anchor name clashes would definitely happen is when two different versions (i.e., development
stages) of the same set of libraries are being used at the same time. In this case, one should let the libraries within each set
refer to each other using anchored names and provide (different) bindings for these names using bind:-directives from
within their respective clients.

A good way of encapsulating the construction of the required local anchor environment for a library is to create a proxy
for it (see Chapter 4).

16

Chapter 4

Export lists

In the simplest case, the export list is given as a sequence of SML symbol names such as shown in earlier examples. But
for more complicated scenarios, CM provides a little “set calculus” for writing export lists. Formally, the export section
specifies the union of a sequence of symbol sets. Each individual set in this sequence can be one of the following:

• a singleton set given by the name of its sole member

• the set difference of two other sets s1 and s2, written as s1-s2
• the intersection of two sets s1 and s2, written as s1*s2
• the union of sets s1, . . . , sn for n ≥ 0, written as (s1 . . . sn)

• the top-level defined symbols of one of the SML source files f that the given library or group consists of, written as
source(f)

• the top-level defined symbols of all constituent SML source files that are not marked local (see Section 7.1.1),
written as source(-)

• the exported symbols of one of the subgroups g, written as group(g)

• the exported symbols of all subgroups, written as group(-)

• the exported symbols of another library l
In most situations, the notation for this is library(l). However, notice that unlike in the case of subgroups and
SML source files, l may or may not be listed as one of the members in the current description. For the case that
l is not a member, its elaboration—determining its set of exported symbols—may require tool parameters to be
specified (see Section 7.1). When tool parameters are necessary, they are given within an extra pair of parentheses
following the name l. Example:

library(foo/bar.cm (bind:(anchor:x value:y)))

If l is a member of the current description, then CM will re-use the earlier elaboration result. Tool parameters within
the export set specification are neither necessary nor permitted in this case.

Notes:

• Intersection has higher precedence than set difference.

• Conditional compilation constructs (see Chapter 8) may be used within set union costructs—both the parenthesized
variety and at top level.

Using the export list calculus, it is easy to set up “proxy” libraries. A proxy library A is a library with a single member
which is another library B so that the export lists of A and B coincide. Proxy libraries are mainly used for the purpose of
managing anchor names and anchor environments (see Section 3.3). Using the library(l) construct one can avoid the
cumbersome repetition of lengthy explicit export lists and, thus, improve maintainability.

17

Chapter 5

Using CM

5.1 Structure CM

Functions that control CM’s operation are accessible as members of a structure named CM which itself is exported from a
library called $smlnj/cm.cm (or, alternatively, $smlnj/cm/cm.cm). This library is pre-registered for auto-loading
at the interactive top level.

Other libraries can exploit CM’s functionality simply by putting a $smlnj/cm.cm entry into their own description file.
Chapter 16 shows one interesting use of this feature.

Here is a description of all members:

5.1.1 Compiling

Two main activities when using CM are to compile ML source code and to build stable libraries:

val recomp : string -> bool
val stabilize : bool -> string -> bool

CM.recomp takes the name of a program’s “root” description file and compiles or recompiles all ML source files that
are necessary to provide definitions for the root library’s export list. (Note: The difference to CM.make is that no linking
takes place.)

CM.stabilize takes a boolean flag and then the name of a library and stabilizes this library. A library is stabilized
by writing all information pertaining to it, including all of its library components (i.e., subgroups), into a single file.
Sublibraries do not become part of the stabilized library; CM records stub entries for them. When a stabilized library is
used in other programs, all members of the library are guaranteed to be up-to-date; no dependency analysis work and no
recompilation work will be necessary. If the boolean flag is false, then all sublibraries of the library must already be
stable. If the flag is true, then CM will recursively stabilize all libraries reachable from the given root.

After a library has been stabilized it can be used even if none of its original sources—including the description file—are
present.

The boolean result of CM.recomp and CM.stabilize indicates success or failure of the operation (true = success).

5.1.2 Linking and execution

In SML/NJ, linking means executing top-level code (i.e., module creation and initialization code) of each compilation
unit. The resulting bindings can then be registered at the interactive top level.

18

val make : string -> bool
val autoload : string -> bool

CM.make first acts like CM.recomp. If the (re-)compilation is successful, then it proceeds by linking all modules that
require linking. Provided there are no link-time errors, it finally introduces new bindings at top level.

During the course of the same CM.make, the code of each compilation module that is reachable from the root will be
executed at most once. Code in units that are marked as private (see Section 5.3) will be executed exactly once. Code in
other units will be executed only if the unit has been recompiled since it was executed last time or if it depends on another
compilation unit whose code has been executed since.

In effect, different invocations of CM.make (and CM.autoload) will share dynamic state created at link time as much
as possible unless the compilation units in question have been explicitly marked private.

CM.autoload acts like CM.make, only “lazily”. See Section 5.2 for more information.

As before, the result of CM.make indicates success or failure of the operation. The result of CM.autoload indicates
success or failure of the registration. (It does not know yet whether loading will actually succeed.)

5.1.3 Registers

Several internal registers control the operation of CM. A register of type T is accessible via a variable of type T
controller, i.e., a pair of get and set functions.1 Any invocation of the corresponding get function reads the
current value of the register. An invocation of the set function replaces the current value with the argument given to
set.

Controllers are members of CM.Control, a sub-structure of structure CM.

type ’a controller = { get: unit -> ’a, set: ’a -> unit }
structure Control : sig
val verbose : bool controller
val debug : bool controller
val keep_going : bool controller
val parse_caching : int controller
val warn_obsolete : bool controller
val conserve_memory : bool controller
val generate_index : bool controller

end

CM.Control.verbose can be used to turn off CM’s progress messages. The default is true and can be overriden at
startup time by the environment variable CM VERBOSE.

In the case of a compile-time error CM.Contol.keep going instructs the CM.recomp phase to continue working on
parts of the dependency graph that are not related to the error. (This does not work for outright syntax errors because a
correct parse is needed before CM can construct the dependency graph.) The default is false, meaning “quit on first error”,
and can be overriden at startup by the environment variable CM KEEP GOING.

CM.Control.parse caching sets a limit on how many parse trees are cached in main memory. In certain cases
CM must parse source files in order to be able to calculate the dependency graph. Later, the same files may need to be
compiled, in which case an existing parse tree saves the time to parse the file again. Keeping parse trees can be expensive
in terms of memory usage. Moreover, CM makes special efforts to avoid re-parsing files in the first place unless they have
actually been modified. Therefore, it may not make much sense to set this value very high. The default is 100 and can be
overriden at startup time by the environment variable CM PARSE CACHING.

This version of CM uses an ML-inspired syntax for expressions in its conditional compilation subsystem (see Chap-
ter 8). However, for the time being it will accept most of the original C-inspired expressions but produces a warning
for each occurrence of an old-style operator. CM.Control.warn obsolete can be used to turn these warnings off.

1The type constructor controller is defined as part of structure CM.

19

The default is true, meaning “warnings are issued”, and can be overriden at startup time by the environment variable
CM WARN OBSOLETE.

CM.Control.debug can be used to turn on debug mode. This currently has the effect of dumping a trace of the master-
slave protocol for parallel and distributed compilation (see Chapter 13) to TextIO.stdOut. The default is false and can be
overriden at startup time by the environment variable CM DEBUG.

Using CM.Control.conserve memory, CM can be told to be slightly more conservative with its use of main mem-
ory at the expense of occasionally incurring additional input from stable library files. This does not save very much
and, therefore, is normally turned off. The default (false) can be overridden at startup by the environment variable
CM CONSERVE MEMORY.

CM.Control.generate index is used to control the generation of human-readable index files (see Section 11.2).
The default setting is false and can be overridden at startup by the environment variable CM GENERATE INDEX.

5.1.4 Path anchors

Structure CM also provides functions to explicitly manipulate the path anchor configuration. These functions are members
of structure CM.Anchor.

structure Anchor : sig
val anchor : string -> string option controller
val reset : unit -> unit

end

CM.Anchor.anchor returns a pair of get and set functions that can be used to query and modify the status of the
named anchor. Note that the get-set-pair operates over type string option; a value of NONEmeans that the anchor
is currently not bound (or, in the case of set, that it is being cancelled). The (optional) string given to set must be a
directory name in native syntax (without trailing arc separator, e.g., / in Unix). If it is specified as a relative path name,
then it will be expanded by prepending the name of the current working directory.

CM.Anchor.reset erases the entire existing path configuration. After a call of this function has completed, all root
environment locations are marked as being “undefined”.

5.1.5 Setting CM variables

CM variables are used by the conditional compilation system (see Section 8.1). Some of these variables are predefined,
but the user can add new ones and alter or remove those that already exist.

val symval : string -> int option controller

Function CM.symval returns a get-set-pair for the symbol whose name string was specified as the argument. Note
that the get-set-pair operates over type int option; a value of NONE means that the variable is not defined.

Examples:

#get (CM.symval "X") (); (* query value of X *)
#set (CM.symval "Y") (SOME 1); (* set Y to 1 *)
#set (CM.symval "Z") NONE; (* remove definition for Z *)

Some care is necessary as CM.symval does not check whether the syntax of the argument string is valid. (However, the
worst thing that could happen is that a variable defined via CM.symval is not accessible2 because there is no legal syntax
to name it.)

2from within CM’s description files

20

5.1.6 Library registry

To be able to share associated data structures such as symbol tables and dependency graphs, CM maintains an internal
registry of all stable libraries that it has encountered during an ongoing interactive session. The CM.Library sub-
structure of structure CM provides access to this registry.

structure Library : sig
type lib
val known : unit -> lib list
val descr : lib -> string
val osstring : lib -> string
val dismiss : lib -> unit
val unshare : lib -> unit

end

CM.Library.known, when called, produces a list of currently known stable libraries. Each such library is represented
by an element of the abstract data type CM.Library.lib.

CM.Library.descr extracts a string describing the location of the CM description file associated with the given
library. The syntax of this string is almost the same as that being used by CM’s master-slave protocol (see Section 13.1).

CM.Library.osstring produces a string denoting the given library’s description file using the underlying operating
system’s native pathname syntax. In other words, the result of a call of CM.Library.osstring is suitable as an
argument to TextIO.openIn.

CM.Library.dismiss is used to remove a stable library from CM’s internal registry. Although removing a library
from the registry may recover considerable amounts of main memory, doing so also eliminates any chance of sharing the
associated data structures with later references to the same library. Therefore, it is not always in the interest of memory-
conscious users to use this feature.

While dependency graphs and symbol tables need to be reloaded when a previously dismissed library is referenced again,
the sharing of link-time state created by this library is not affected. (Link-time state is independently maintained in a
separate data structure. See the discussion of CM.unshare below.)

CM.Library.unshare is used to remove a stable library from CM’s internal registry, and—at the same time—to
inhibit future sharing with its existing link-time state. Any future references to this library will see newly created state
(which will then be properly shared again). (Warning: This feature is not the preferred way of creating unshared state;
use functors for that. However, it can come in handy when two different (and perhaps incompatible) versions of the
same library are supposed to coexist—especially if one of the two versions is used by SML/NJ itself. Normally, only
programmers working on SML/NJ’s compiler are expected to be using this facility.)

5.1.7 Internal state

For CM to work correctly, it must maintain an up-to-date picture of the state of the surrounding world (as far as that state
affects CM’s operation). Most of the time, this happens automatically and should be transparent to the user. However,
occasionally it may become necessary to intervene expliticly.

Access to CM’s internal state is facilitated by members of the CM.State structure.

structure State : sig
val pending : unit -> string list
val synchronize : unit -> unit
val reset : unit -> unit

end

CM.State.pending produces a list of strings, each string naming one of the symbols that are currently registered (i.e.,
“virtually bound”) but not yet resolved by the autoloading mechanism.

21

CM.State.synchronize updates tables internal to CM to reflect changes in the file system. In particular, this will be
necessary when the association of file names to “file IDs” (in Unix: inode numbers) changes during an ongoing session.
In practice, the need for this tends to be rare.

CM.State.reset completely erases all internal state in CM. To do this is not very advisable since it will also break the
association with pre-loaded libraries. It may be a useful tool for determining the amount of space taken up by the internal
state, though.

5.1.8 Compile servers

On Unix-like systems, CM supports parallel compilation. For computers connected using a LAN, this can be extended to
distributed compilation using a network file system and the operating system’s “rsh” facility. For a detailed discussion,
see Chapter 13.

Sub-structure CM.Server provides access to and manipulation of compile servers. Each attached server is represented
by a value of type CM.Server.server.

structure Server : sig
type server
val start : { name: string,

cmd: string * string list,
pathtrans: (string -> string) option,
pref: int } -> server option

val stop : server -> unit
val kill : server -> unit
val name : server -> string

end

CM is put into “parallel” mode by attaching at least one compile server. Compile servers are attached using invocations
of CM.Server.start. The function takes the name of the server (as an arbitrary string) (name), the Unix command
used to start the server in a form suitable as an argument to Unix.execute (cmd), an optional “path transformation
function” for converting local path names to remote pathnames (pathtrans), and a numeric “preference” value that is
used to choose servers at times when more than one is idle (pref). The optional result is the handle representing the
successfully attached server.

An existing server can be shut down and detached using CM.Server.stop or CM.Server.kill. The argument
in either case must be the result of an earlier call of CM.Server.start. Function CM.Server.stop uses CM’s
master-slave protocol to instruct the server to shut down gracefully. Only if this fails it may become necessary to use
CM.Server.kill, which will send a Unix TERM signal to destroy the server.

Given a server handle, function CM.Server.name returns the string that was originally given to the call of
CM.Server.start used to created the server.

5.1.9 Plug-ins

As an alternative to CM.make or CM.autoload, where the main purpose is to subsequently be able to access the library
from interactively entered code, one can instruct CM to load libraries “for effect”.

val load_plugin : string -> bool

Function CM.load plugin acts exactly like CM.make except that even in the case of success no new symbols will
be bound in the interactive top-level environment. That means that link-time side-effects will be visible, but none of the
exported definitions become available. This mechanism can be used for “plug-in” modules: a core library provides hooks
where additional functionality can be registered later via side-effects; extensions to this core are implemented as additional
libraries which, when loaded, register themselves with those hooks. By using CM.load plugin instead of CM.make,
one can avoid polluting the interactive top-level environment with spurious exports of the extension module.

CM itself uses plug-in modules in its member-class subsystem (see Chapter 12). This makes it possible to add new classes
and tools very easily without having to reconfigure or recompile CM, not to mention modify its source code.

22

5.1.10 Support for stand-alone programs

CM can be used to build stand-alone programs. In fact SML/NJ itself—including CM—is an example of this. (The
interactive system cannot rely on an existing compilation manager when starting up.)

A stand-alone program is constructed by the runtime system from existing binfiles or members of existing stable libraries.
CM must prepare those binfiles or libraries together with a list that describes them to the runtime system.

val mk_standalone : bool option ->
{ project: string, wrapper: string, target: string } ->
string list option

Here, project and wrapper name description files and target is the name of a heap image—with or without the
usual implicit heap image suffix; see the description of SMLofNJ.exportFn from the (SML/NJ-specific extension of
the) Basis Library [GR04].

A call of mk standalone triggers the following three-stage procedure:

1. Depending on the optional boolean argument, project is subjected to the equivalent of either CM.recomp or
CM.stabilize. NONE means CM.recomp, and (SOME r) means CM.stabilize r. There are tree ways
of how to continue from here:

(a) If recompilation of project failed, then a result of NONE will be returned immediately.

(b) If everything was up-to-date (i.e, if no ML source had to be compiled and all these sources were older than the
existing target), then a result of SOME [] will be returned.

(c) Otherwise execution proceeds to the next stage.

2. The wrapper library named by wrapper is being recompiled (using the equivalent of CM.recomp). If this fails,
NONE is returned. Otherwise execution proceeds to the next stage.

3. CM.mk standalone constructs a topologically sorted list l of strings that, when written to a file, can be passed to
the runtime system in order to perform stand-alone linkage of the program given by wrapper. The final result is
SOME l.

The idea is that project names the library that actually implements the main program while wrapper names an
auxiliary wrapper library responsible for issuing a call of SMLofNJ.exportFn (generating target) on behalf of
project.

The programmer should normally never have a need to invoke CM.mk standalone directly. Instead, this function is
used by an auxiliary script called ml-build (see Chapter 15.1).

5.1.11 Finding all sources

The CM.sources function can be used to find the names of all source files that a given library depends on. It returns
the names of all files involved with the exception of skeleton files and binfiles (see Chapter 11). Stable libraries are
represented by their library file; their description file or consitutent members are not listed.

Normally, the function reports actual file names as used for accessing the file system. For (stable) library files this behavior
can be inconvenient because these names depend on architecture and operating system. For this reason, CM.sources
accepts an optional pair of strings that then will be used in place of the architecture- and OS-specific part of these names.

val sources :
{ arch: string, os: string } option ->
string ->
{ file: string, class: string, derived: bool } list option

23

In case there was some error analyzing the specified library or group, CM.sources returns NONE. Otherwise the result
is a list of records, each carrying a file name, the corresponding class, and information about whether or not the source
was created by some tool.

Examples:

generating “make” dependencies: To generate dependency information usable by Unix’ make command, one would
be interested in all files that were not derived by some tool application. Moreover, one would probably like to use
shell variables instead of concrete architecture- and OS-names:

Option.map (List.filter (not o #derived))
(CM.sources (SOME { arch = "$ARCH", os = "$OPSYS" })

"foo.cm");

A call of CM.sources similar to the one shown here is used by the auxiliary script ml-makedepend (see
Section 15.2).

finding all noweb sources: To find all noweb sources (see Section 7.2.4), e.g., to be able to run the document prepara-
tion program noweave on them, one can simply look for entries of the noweb class. Here, one would probably
want to include derived sources:

Option.map (List.filter (fn x => #class x = "noweb"))
(CM.sources NONE "foo.cm");

5.2 The autoloader

From the user’s point of view, a call of CM.autoload acts very much like the corresponding call of CM.make because
the same bindings that CM.make would introduce into the top-level enviroment are also introduced by CM.autoload.
However, most work will be deferred until some code that is entered later refers to one or more of these bindings. Only
then will CM go and perform just the minimal work necessary to provide the actual definitions.

The autoloader plays a central role for the interactive system. Unlike in earlier versions, it cannot be turned off since it
provides many of the standard pre-defined top-level bindings.

The autoloader is a convenient mechanism for virtually “loading” an entire library without incurring an undue increase in
memory consumption for library modules that are not actually being used.

5.3 Sharing of state

Whenever it is legal to do so, CM lets multiple invocations of CM.make or CM.autoload share dynamic state created by
link-time effects. Of course, sharing is not possible (and hence not “legal”) if the compilation unit in question has recently
been recompiled or depends on another compilation unit whose code has recently been re-executed. The programmer can
explicitly mark certain ML files as shared, in which case CM will issue a warning whenever the unit’s code has to be
re-executed.

State created by compilation units marked as private is never shared across multiple calls to CM.make or CM.autoload.
To understand this behavior it is useful to introduce the notion of a traversal. A traversal is the process of traversing the
dependency graph on behalf of CM.make or CM.autoload. Several traversals can be executed interleaved with each
other because a CM.autoload traversal normally stays suspended and is performed incrementally driven by input from
the interactive top level loop.

As far as sharing is concerned, the rule is that during one traversal each compilation unit will be executed at most once.
This means that the same “program” will not see multiple instantiations of the same compilation unit (where “program”
refers to the code managed by one call of CM.make or CM.autoload). Each compilation unit will be linked at most
once during a traversal and private state will not be confused with private state of other traversals that might be active at
the same time.

24

5.3.1 Sharing annotations

ML source files in CM description files can be specified as being private or shared. This is done by adding a tool parameter
specification for the file in the library- or group description file (see Chapter 7). To mark an ML file as private, follow the
file name with the word private in parentheses. For shared ML files, replace private with shared.

An ML source file that is not annotated will typically be treated as shared unless it statically depends on some other
private source. It is an error, checked by CM, for a shared source to depend on a private source.

5.3.2 Sharing with the interactive system

The SML/NJ interactive system, which includes the compiler, is itself created by linking modules from various libraries.
Some of these libraries can also be used in user programs. Examples are the Standard ML Basis Library $/basis.cm,
the SML/NJ library $/smlnj-lib.cm, and the ML-Yacc library $/ml-yacc-lib.cm.

If a module from a library is used by both the interactive system and a user program running under control of the interactive
system, then CM will let them share code and dynamic state. Moreover, the affected portion of the library will never have
to be “relinked”.

25

Chapter 6

Version numbers

A CM library can carry a version number. Version numbers are specified in parentheses after the keyword Library as
non-empty dot-separated sequences of non-negative integers. Example:

Library (1.4.1.4.2.1.3.5)
structure Sqrt2

is
sqrt2.sml

6.1 How versions are compared

Version numbers are compared lexicographically, dot-separated component by dot-separated component, from left to
right. The components themselves are compared numerically.

6.2 Version checking

An importing library or library component can specify which version of the imported library it would like to see. See the
discussion is Section 7.1.2 for how this is done. Where a version number is requested, an error is signalled if one of the
following is true:

• the imported library does not carry a version number

• the imported library’s version number is smaller than the one requested

• the imported library’s version number has a first component (known as the “major” version number) that is greater
than the one requested

A warning (but no error) is issued if the imported library has the same major version but the version as a whole is greater
than the one requested.

Note: Version numbers should be incremented on every change to a library. The major version number should be increased
on every change that is not backward-compatible.

26

Chapter 7

Member classes and tools

Most members of groups and libraries are either plain ML files or other description files. However, it is possible to
incorporate other types of files—as long as their contents can in some way be expanded into ML code or CM descriptions.
The expansion is carried out by CM’s tools facility.

CM maintains an internal registry of classes and associated rules. Each class represents the set of source files that its
corresponding rule is applicable to. For example, the class mlyacc is responsible for files that contain input for the
parser generator ML-Yacc [TA90]. The rule for mlyacc takes care of expanding an ML-Yacc specifications foo.grm
by invoking the auxiliary program ml-yacc. The resulting ML files foo.grm.sig and foo.grm.sml are then used
as if their names had directly been specified in place of foo.grm.

CM knows a small number of built-in classes. In many situations these classes will be sufficient, but in more complicated
cases it may be worthwhile to add a new class. Since class rules are programmed in ML, adding a class is not as simple a
matter as writing a rule for UNIX’ make program [Fel79]. Of course, using ML has also advantages because it keeps CM
extremely flexible in what rules can do. Moreover, it is not necessary to learn yet another “little language” in order to be
able to program CM’s tool facility.

When looking at the member of a description file, CM determines which tool to use by looking at clues like the file name
suffix. However, it is also possible to specify the class of a member explicitly. For this, the member name is followed by
a colon : and the name of the member class. All class names are case-insensitive.

In addition to genuine tool classes, there are four member classes that refer to facilities internal to CM:

sml is the class of ordinary ML source files.

cm is the class of CM library or group description files.

tool is the class of plugin tools. Its purpose is to trigger the loading of an auxiliary plugin module—usually with the
purpose of extending the set of tool classes that CM understands. See Section 12.3 for more information.

suffix is a class similar to tool. Its purpose is to declare additional filename suffixes and their associated classes. See
Section 12.3.

By default, CM automatically classifies files with a .sml suffix, a .sig suffix, or a .fun suffix as ML-source, file
names ending in .cm as CM descriptions. Failure to classify a member will be reported as an error.

7.1 Tool parameters

In many cases the name of the member that caused a rule to be invoked is the only input to that rule. However, rules can
be written in such a way that they take additional parameters. Those parameters, if present, must be specified in the CM
description file between parentheses following the name of the member and the optional member class.

27

CM’s core mechanism parses these tool options and breaks them up into a list of items, where each item is either a filename
(i.e., looks like a filename) or a named list of sub-options. However, CM itself does not interpret the result but passes it on
to the tool’s rule function. It is in each rule’s own responsibility to assign meaning to its options.

All named sub-option lists (for any class) are specified by a name string followed by a colon : and a parenthesized list of
other tool options. If the list contains precisely one element, then its parentheses may be omitted.

7.1.1 Parameters for class sml

The sml class accepts four optional parameters. One is the sharing annotation that was explained earlier (see Section 5.3).
The sharing annotation must be one of the two strings shared and private. If shared is specified, then dynamic
state created by the compilation unit at link-time must be shared across invocations of CM.make or CM.autoload. The
private annotation, on the other hand, means that dynamic state cannot be shared across such calls to CM.make or
CM.autoload.

The second possible parameter for class sml is a sub-option list labeled setup and can be used to specify code that
will be executed just before and just after the compiler is invoked for the ML source file. Code to be executed before
compilation is labeled pre, code to be executed after compilation is complete is labeled post; either part is optional.
Executable code itself is specified using strings that contain ML source text.

For example, if one wishes to disable warning messages for a specific source file poorlywritten.sml (but not for
others), then one could write:

poorlywritten.sml (setup:(pre: "local open Compiler.Control\n\
\ in val w = !printWarnings before\n\
\ printWarnings := false\n\
\ end;"

post:"Compiler.Control.printWarnings := w;"))

Note that neither the pre- nor the post-section will be executed if the ML file does not need to be compiled.

The pre-section is compiled and executed in the current toplevel-environment while the post-section uses the toplevel-
environment augmented with definitions from the pre-section. After the ML file has been compiled and the post-section
(if present) has completed execution, definitions made by either section will be erased. This means that setup code for
other files cannot refer to them, and neither can code that in the future might be entered at top level.

The third possible parameter for class sml is a sub-option labelled lambdasplit. It controls the cross-module inlining
mechanism of SML/NJ.1 The value of the option can either be a non-negative decimal integer or one of the following
words: default, on, off, or infinity. The effect of this parameter also depends on a system-wide setting (acces-
sible via structure Compiler.Control.LambdaSplitting). In the following table, the per-file lambdasplit
parameter is shown at the top and the system-wide default is shown on the left side. Table entries show the combined
effect of the two: -1 means “no inlinable exports from this file”, ∞ means “as many inlinable exports as possible”, and a
non-negative numeric value specifies some intermediate “aggressiveness” of the splitting engine.

default on off infinity n

Off −1 −1 −1 −1 −1
Default NONE −1 0 −1 ∞ n

Default (SOME m) m m −1 ∞ n

Finally, the last possible parameter for class sml is the string local. A file marked local will be ignored when
calculating the symbol set for an occurence of source(-) within the export list (see Chapter 4).

1The label is named after the technique (“λ-splitting” [BA97]) used to achieve the effect of cross-module inlining.

28

7.1.2 Parameters for class cm

The cm class understands two kinds of parameters. The first is a named parameter labeled by the string version. It
must have the format of a version number. CM will interpret this as a version request, thereby insuring that the imported
library is not too old or too new. (See Chapter 6 for more on this topic.)

Example:
euler.cm (version:2.71828)
pi.cm (version:3.14159)

Normally, CM looks for stable library files in directory CM/arch-os (see Chapter 11). However, if an explicit version
has been requested, it will first try directory CM/version/arch-os before looking at the default location. This way it is
possible to keep several versions of the same library in the file system.

However, CM normally does not permit the simultaneous use of multiple versions of the same library in one session. The
disambiguating rule is that the version that gets loaded first “wins”; subsequent attempts to load different versions result
in warnings or errors. (See the discussion of CM.unshare in Section 5.1.6 for how to to circumvent this restriction.)

The second kind of parameter understood by cm is a named parameter labeled by the string bind (see Section 3.3). It
can occur arbitrarily many times and each occurence must be a suboption-list of the form (anchor:a value:v). The
set of bind-parameters augments the current anchor environment to form the environment that is used while processing
the contents of the named CM description file.

7.1.3 Parameters for classes tool and suffix

Class tool (see the discussion is Section 12.3.2) does not accept any parameters.

Class suffix (see Section 12.3.3) takes one mandatory parameter which is either simply a class name or the same class
name labeled by class. Thus, the following two lines are equivalent:
ml : suffix (sml)
ml : suffix (class:sml)

There are no recognized filename suffixes for these two classes.

7.2 Built-in tools

7.2.1 Program generators

Ths SML/NJ installation includes a number of program generators that come with CM tools. These are summarized in
the following table, which lists the tool name, its class, the file suffixes that are mapped to the tool, and a description of
the tool.

Name Class Suffixes Options? Description
ASDLGen asdlgen .asdl no Source file is an ASDL specification that should be pro-

cessed by the asdlgen command to produce type definitions
and pickling code.

ML-Antlr ml-antlr .grm (see below) no Source file is

ML-Burg ml-burg .burg no Source file is a specification file for the ml-burg code-
generater generator [GG93].

ML-Lex mllex .lex and .l no Source file is a lexer-specification that should be pro-
cessed with the ml-ulex parser generator tool run with the
--ml-lex-mode command-line flag.

ML-ULex ml-ulex .lex (see below) no Source file is a lexer-specification that should be processed
with the ml-ulex parser generator tool.

ML-Yacc mlyacc .grm and .y yes Source file is a grammar file that should be processed with
the ml-yacc parser generator tool.

29

These tools invoke the corresponding command if the target is outdated. Unless anchored using the path anchor mech-
anism (see Section 3.3), the command is located using the operating system’s path search mechanism (e.g., the $PATH
environment variable).

The suffixes for the ML-Antlr and ML-ULex tools are in conflict with those of the ML-Yacc and ML-Lex tools (resp.). In
the default installation of SML/NJ, the .grm suffix is mapped to ML-Yacc and the .lex suffix is mapped to ML-Lex. It
is possible to change this behavior by editing the config/targets file prior to installation.

As noted in the above table, the mlyacc class accepts two optional tool parameters labeled sigoptions and smloptions.
They specify tool options to be passed on to the generated .sig- and .sml-files, respectively. Example2:

lang.grm (sigoptions:(setup:(pre:"print \"compiling lang.grm.sig\\n\";"))
smloptions:(private))

7.2.2 Shell

The Shell tool can be used to specify arbitrary shell commands to be invoked on behalf of a given file. The name of the
class is shell. There are no recognized file name suffixes. This means that in order to use the shell tool one must always
specify the shell member class explicitly.

The rule for the shell class relies on tool parameters. The parameter list must be given in parentheses and follow the
shell class specification.

Consider the following example:

foo.pp : shell (target:foo.sml options:(shared)
/lib/cpp -P -Dbar=baz %s %t)

This member specification says that file foo.sml can be obtained from foo.pp by running it through the C preprocessor
cpp. The fact that the target file is given as a tool parameter implies that the member itself is the source. The named
parameter options lists the tool parameters to be used for that target. (In the example, the parentheses around shared
are optional because it is the only element of the list.) The command line itself is given by the remaining non-keyword
parameters. Here, a single %s is replaced by the source file name, and a single %t is replaced by the target file name; any
other string beginning with % is shortened by its first character.

In the specification one can swap the positions of source and target (i.e., let the member name be the target) by using a
source parameter:

foo.sml : shell (source:foo.pp options:shared
/lib/cpp -P -Dbar=baz %s %t)

Exactly one of the source and target parameters must be specified; the other one is taken to be the member name
itself. The target class can be given by writing a class parameter whose single sub-option must be the desired class
name.

The usual distinction between native and standard filename syntax applies to any given source or target parameter.

For example, if one were working on a Win32 system and the target file is supposed to be in the root directory on volume
D:, then one must use native syntax to write it. One way of doing this would be:

"D:\\foo.sml" : shell (source : foo.pp options : shared
cpp -P -Dbar=baz %s %t)

As a result, foo.sml is interpreted using native syntax while foo.pp uses standard conventions (although in this case
it does not make a difference). Had we used the target version from above, one would have to write:

foo.pp : shell (target : "D:\\foo.sml" options : shared
cpp -P -Dbar=baz %s %t)

The shell tool invokes its command whenever the target is outdated with respect to the source.
2Since the generated .sig-file contains nothing more than an ML signature definition, it is typically not very useful to pass any options to it.

30

7.2.3 Make

The Make tool (class make) can (almost) be seen as a specialized version of the Shell tool. It has no source and one target
(the member itself) which is always considered outdated. As with the Shell tool, it is possible to specify target class and
parameters using the class and options keyword parameters.

The tool invokes the shell command make on the target. Unless anchored using the path anchor mechanism 3.3, the
command will be located using the operating system’s path search mechanism (e.g., the $PATH environment variable).

Any parameters other than the class and options specifications must be plain strings and are given as additional
command line arguments to make. The target name is always the last command line argument.

Example:

bar-grm : make (class:mlyacc -f bar-grm.mk)

Here, file bar-grm is generated (and kept up-to-date) by invoking the command:

make -f bar-grm.mk bar-grm

The target file is then treated as input for ml-yacc.

Cascading Shell- and Make-tools is easily possible. Here is an example that first uses Make to build bar.pp and then
filters the contens of bar.pp through the C preprocessor to arrive at bar.sml:

bar.pp : make (class:shell
options:(target:bar.sml cpp -Dbar=baz %s %t)

-f bar-pp.mk)

7.2.4 Noweb

The noweb class handles sources written for Ramsey’s noweb literate programming facility [Ram94]. Files ending with
suffix .nw are automatically recognized as belonging to this class.

The list of targets that are to be extracted from a noweb file must be specified using tool options. A target can then have a
variety of its own options. Each target is specified by a separate tool option labelled target. The option usually has the
form of a sub-option list. Recognized sub-options are:

name the name of the target

root the (optional) root tag for the target (given to the -R command line switch for the notangle command); if root
is missing, name is used instead

class the (optional) class of the target

options (optional) options for the tool that handles the target’s class

lineformat a string that will be passed to the -L command line option of notangle

Example:

project.nw (target:(name:main.sml options:(private))
target:(name:grammar class:mlyacc)
target:(name:parse.sml))

In place of the sub-option list there can be a single string option which will be used for name or even an unnamed
parameter (i.e., without the target label). If no targets are specified, the tool will assume two default targets by stripping
the .nw suffix (if present) from the source name and adding .sig as well as .sml.

The following four examples are all equivalent:

31

foo.nw (target:(name:foo.sig) target:(name:foo.sml))
foo.nw (target:foo.sig target:foo.sml)
foo.nw (foo.sig foo.sml)
foo.nw

If lineformat is missing, then a default based on the target class is used. Currently only the sml and cm classes are
known to CM; other classes can be added or removed by using the NowebTool.lineNumbering controller function
exported from library $/noweb-tool.cm:

val lineNumbering: string -> { get: unit -> string option,
set: string option -> unit }

The noweb class accepts two other parameter besides target:

subdir specifies a sub-option that is used to specify a directory where derived files (i.e., target files and witness files as
far as they have been specified using relative path names) are created. If the subdir option is missing, its value
defaults to NW.

witness specifies an auxiliary derived file whose time stamp is used by CM to avoid recompiling extracted files whose
contents have not changed. If witness has not been specified, then CM uses time stamps on extracted files directly
to determine whether notangle needs to be run. Thus, with no witness, any change to the master file causes time
stamps on all extracted files to be updated as well. If a witness was specified, then CM will write over extracted
files, causing their time stamps to change, only if their contents have also changed. The subdir specification also
applies to the name of the witness file.

Example:

foo.nw (subdir:NOWEBFILES
witness:foo.wtn
target:(name:main.sml))

Here, the files named main.sml and foo.wtn will be created as

NOWEBFILES/main.sml
NOWEBFILES/foo.wtn

while without the subdir-option it would have been

NW/main.sml
NW/foo.wtn

To avoid the creation of such a sub-directory, one can use the current arc “.” and write:

foo.nw (subdir:.
witness:foo.wtn
target:(name:main.sml))

7.2.5 Dir

Using the Dir tool one can use directory names in description files. There are two possible uses for the Dir tool:

1. Factoring out common directory names.

2. Scanning the contents of directories for files with ML code.

32

Directory factoring: The main purpose of the Dir tool (class dir) is to simplify CM descriptions that mention a large
number of files all of which are located in in the same directory. For this style of usage, tool options have to be specified.

For example, writing

Group is
long/directory/name : dir (a.sml b/c.sml d.sml)

is equivalent to the following verbose description:

Group is
long/directory/name/a.sml
long/directory/name/b/c.sml
long/directory/name/d.sml

Since CM automatically classifies directory names as members of class dir, the example can be further simplified:

Group is
long/directory/name (a.sml b/c.sml d.sml)

Options for class dir consist of a list of items, each item having one of two possible forms:

1. The item can be a sub-option list of the form member:(m class:c options:o) which emulates an ordinary
member specification with class and options. The class- and options-fields may (independently of each other)
be missing, but the order of fields that are present is fixed.

2. The item can be a simple name (as shown in the example). Such a simple name m is equivalent to the longer form
member:(m).

Members m must always be specified using relative path names.

For example, the description

Group is
alpha/a.sml (private)
alpha/b.ml : sml (shared)
alpha/c.cm
beta/d.sml
beta/e.sml

can be simplified as:

Group is
alpha (member:(a.sml options:private)

member:(b.ml class:sml options:shared)
c.cm)

beta (d.sml e.sml)

Directory scanning: Another use of the Dir tool, indicated by the absence of tool options, is to include all ML code in
a given directory “whole-sale style”. For example, a member of the form

projects/ml/foo : dir

lets CM scan the contents of directory projects/ml/foo and proceed as if a list of all discovered ML files had been
written in place of the dir member. For this, the usual classification mechanism is used to decide which directory entries
are to be considered files containing ML code.

As before, the example could be further simplified by omitting the class name. Thus, a very quick way of putting together
a small project is to use a generic description file of the form:

Group is $/basis.cm .

33

As usual, the dot denotes the current directory. Therefore, CM will scan the current directory and include any ML code it
finds there. (Library $/basis.cm is necessary for most non-trivial programs, so we included it also.)

This is deceptively simple, but be warned: The technique of letting CM scan the physical directory is to be avoided for
any serious project because it is very fragile. It does not mix well with the use of other tools, it will break when certain
otherwise unrelated ML files are present, and so on, and so forth. In short, for serious programming the Dir tool should
not be used without specifying options.

34

Chapter 8

Conditional compilation

In its description files, CM offers a simple conditional compilation facility inspired by the preprocessor for the C lan-
guage [KR88]. However, it is not really a pre-processor, and the syntax of the controlling expressions is borrowed from
SML.

Sequences of members can be guarded by #if-#endif brackets with optional #elif and #else lines in between. The
same guarding syntax can also be used to conditionalize the export list. #if-, #elif-, #else-, and #endif-lines must
start in the first column and always extend to the end of the current line. #if and #elif must be followed by a boolean
expression.

Boolean expressions can be formed by comparing arithmetic expressions (using operators <, <=, =, >=, >, or <>), by
logically combining two other boolean expressions (using operators andalso, orelse, =, or <>, by querying the
existence of a CM symbol definition, or by querying the existence of an exported ML definition.

Arithmetic expressions can be numbers or references to CM symbols, or can be formed from other arithmetic expressions
using operators +, - (subtraction), *, div, mod, or˜ (unary minus). All arithmetic is done on signed integers.

Any expression (arithmetic or boolean) can be surrounded by parentheses to enforce precedence.

8.1 CM variables

CM provides a number of “variables” (names that stand for certain integers). These variables may appear in expressions
of the conditional-compilation facility. The exact set of variables provided depends on SML/NJ version number, machine
architecture, and operating system. A reference to a CM variable is considered an arithmetic expression. If the variable is
not defined, then it evaluates to 0. The expression defined(v) is a boolean expression that yields true if and only if v is
a defined CM variable.

The names of CM variables are formed starting with a letter followed by zero or more occurences of letters, decimal digits,
apostrophes, or underscores.

The following variables will be defined and bound to 1:

• depending on the operating system:
OPSYS UNIX, OPSYS WIN32, OPSYS MACOS, OPSYS OS2, or OPSYS BEOS

• depending on processor architecture:
ARCH SPARC, ARCH ALPHA, ARCH MIPS, ARCH X86, ARCH HPPA, ARCH RS6000, or ARCH PPC

• depending on the processor’s endianness: BIG ENDIAN or LITTLE ENDIAN

• depending on the native word size of the implementation: SIZE 32 or SIZE 64

35

• the symbol NEW CM

Furthermore, the symbol SMLNJ VERSION will be bound to the major version number of SML/NJ (i.e., the number
before the first dot) and SMLNJ MINOR VERSION will be bound to the system’s minor version number (i.e., the number
after the first dot).

Using the CM.symval interface one can define additional variables or modify existing ones.

8.2 Querying exported definitions

An expression of the form defined(n s), where s is an ML symbol and n is an ML namespace specifier, is a boolean
expression that yields true if and only if any member included before this test exports a definition under this name. There-
fore, order among members matters after all (but it remains unrelated to the problem of determining static dependencies)!
The namespace specifier must be one of: structure, signature, functor, or funsig.

If the query takes place in the “exports” section of a description file, then it yields true if any of the included members
exports the named symbol.

Example:

Library
structure Foo

#if defined(structure Bar)
structure Bar

#endif
is
#if SMLNJ_VERSION > 110

new-foo.sml
#else

old-foo.sml
#endif
#if defined(structure Bar)

bar-client.sml
#else

no-bar-so-far.sml
#endif

Here, the file bar-client.sml gets included if SMLNJ VERSION is greater than 110 and new-foo.sml ex-
ports a structure Bar or if SMLNJ VERSION <= 110 and old-foo.sml exports structure Bar. Otherwise file
no-bar-so-far.sml gets included instead. In addition, the export of structure Bar is guarded by its own existence.
(Structure Bar could also be defined by no-bar-so-far.sml in which case it would get exported regardless of the
outcome of the other defined test.)

8.3 Explicit errors

A pseudo-member of the form #error . . ., which—like other #-items—starts in the first column and extends to the end
of the line, causes an explicit error message to be printed unless it gets excluded by the conditional compilation logic. The
error message is given by the remainder of the line after the word error.

36

Chapter 9

Access control

The basic idea behind CM’s access control is the following: In their description files, groups and libraries can specify a list
of privileges that the client must have in order to be able to use them. Privileges at this level are just names (strings) and
must be written in front of the initial keyword Library or Group. If one group or library imports from another group
or library, then privileges (or rather: privilege requirements) are being inherited. In effect, to be able to use a program, one
must have all privileges for all its libraries, sub-libraries and library components, components of sub-libraries, and so on.

Of course, this alone would not yet be satisfactory. The main service of the access control system is that it can let a
client use an “unsafe” library “safely”. For example, a library LSafe.cm could “wrap” all the unsafe operations in
LUnsafe.cm with enough error checking that they become safe. Therefore, a user of LSafe.cm should not also be
required to possess the privileges that would be required if one were to use LUnsafe.cm directly.

In CM’s access control model it is possible for a library to “wrap” privileges. If a privilege P has been wrapped, then the
user of the library does not need to have privilege P even though the library is using another library that requires privilege
P . In essence, the library acts as a go-between who provides the necessary credentials for privilege P to the sub-library.

Of course, not everybody can be allowed to establish a library with such a “wrapped” privilege P . The programmer who
does that should at least herself have privilege P (but perhaps better, she should have permission to wrap P—a stronger
requirement).

In CM, wrapping a privilege is done by specifying the name of that privilege within parenthesis. The wrapping becomes
effective once the library gets stabilized via CM.stabilize. The (not yet implemented) enforcement mechanism must
ensure that anyone who stabilizes a library that wraps P has permission to wrap P .

Note that privileges cannot be wrapped at the level of CM groups.

Access control is a new feature. At the moment, only the basic mechanisms are implemented, but there is no enforcement.
In other words, everybody is assumed to have every possible privilege. CM merely reports which privileges “would have
been required”.

37

Chapter 10

The pervasive environment

The pervasive environment can be thought of as a compilation unit that all compilation units implicitly depend upon.
The pervasive enviroment exports all non-modular bindings (types, values, infix operators, overloaded symbols) that are
mandated by the specification for the Standard ML Basis Library [GR04]. (All other bindings of the Basis Library are
exported by $/basis.cm which is a genuine CM library.)

The pervasive environment is the only place where CM conveys non-modular bindings from one compilation unit to
another, and its definition is fixed.

38

Chapter 11

Files

CM uses three kinds of files to store derived information during and between sessions:

1. Skeleton files are used to store a highly abbreviated version of each ML source file’s abstract syntax tree—just barely
sufficient to drive CM’s dependency analysis. Skeleton files are much smaller and (for a program) easier to read
than actual ML source code. Therefore, the existence of valid skeleton files makes CM a lot faster because usually
most parsing operations can be avoided that way.

2. Binfiles are the SML/NJ equivalent of object files. They contain executable code and a symbol table for the associ-
ated ML source file.

3. Library files (sometimes called: stablefiles) contain dependency graph, executable code, and symbol tables for an
entire CM library including all of its components (groups). Other libraries used by a stable library are not included
in full. Instead, references to those libraries are recorded using their (preferably anchored) pathnames.

Normally, all these files are stored in a subdirectory of directory CM. CM itself is a subdirectory of the directory where the
original ML source file or—in the case of library files—the original CM description file is located.

Skeleton files are machine- and operating system-independent. Therefore, they are always placed into the same directory
CM/SKEL. Parsing (for the purpose of dependency analysis) will be done only once even if the same file system is
accessible from machines of different type.

Binfiles and library files contain executable code and other information that is potentially system- and architecture-
dependent. Therefore, they are stored under CM/arch-os where arch is a string indicating the type of the current CPU
architecture and os a string denoting the current operating system type.

As explained in Section 2.8, library files are a bit of an exception in the sense that they do not require any source files
or any other derived files of the same library to exist. As a consequence, the location of such a library file should be
described as being relative to “the location of the original CM description file if that description file still existed”. (Of
course, nothing precludes the CM description file from actually existing, but in the presence of a corresponding library
file CM will not take any notice of that.)

Note: As discussed in Section 7.1.2, CM sometimes looks for library files in CM/version/arch-os. However, library files
are never created there by CM. If several versions of the same library are to be provided, an administrator must arrange
the directory hierarchy accordingly “by hand”.

11.1 Time stamps

For skeleton files and binfiles, CM uses file system time stamps (i.e., modification time) to determine whether a file has
become outdated. The rule is that in order to be considered “up-to-date” the time stamp on skeleton file and binfile has to

39

be exactly the same1 as the one on the ML source file. This guarantees that all changes to a source will be noticed—even
those that revert to an older version of a source file.2

CM also uses time stamps to decide whether tools such as ML-Yacc or ML-Lex need to be run (see Chapter 7). However,
the difference is that a file is considered outdated if it is older than its source. Some care on the programmers side is
necessary since this scheme does not allow CM to detect the situation where a source file gets replaced by an older version
of itself.

11.2 Index files

CM can optionally generate a human-readable index file for each description file. An index files alphabetically lists all
symbols defined or imported within the given library or library component. Index-file generation is normally disabled. To
enable it, CM.Control.generate index must be set to true (see Section 5.1).

With index-file generation enabled, index files will be written for all description files involved every time CM performs a
dependency analysis. (In other words, it is a side-effect to other CM operations such as CM.make etc.) If the name of the
description files is p/d.cm, then the corresponding index file will be in p/CM/INDEX/d.cm.

1CM explicitly sets the time stamp to be the same.
2except for the pathological case where two different versions of the same source file have exactly the same time stamp

40

Chapter 12

Extending the tool set

CM’s tool set is extensible: new tools can be added by writing a few lines of ML code. The necessary hooks for this are
provided by a structure Tools which is exported by the $smlnj/cm/tools.cm library.

12.1 Adding simple shell-command tools

If the tool is implemented as a “typical” shell command, then all that needs to be done is a single call of:

Tools.registerStdShellCmdTool

For example, suppose you have made a new, improved version of ML-Yacc (“New-ML-Yacc”) and want to register it
under a class called nmlyacc. Here is what you write:

val _ = Tools.registerStdShellCmdTool
{ tool = "New-ML-Yacc",
class = "nmlyacc",
suffixes = ["ngrm", "ny"],
cmdStdPath = fn () => ("new-ml-yacc", []),
template = NONE,
extensionStyle = Tools.EXTEND [

("sig", SOME "sml", fn _ => NONE),
("sml", SOME "sml", fn x => x)

],
dflopts = [] }

This code can be packaged as a CM library and loaded via CM.make or CM.load plugin. (CM.autoload is not
enough because of its lazy nature which prevents the required side-effects to occur.) Alternatively, the code could also be
entered at the interactive top level after loading library $smlnj/cm/tools.cm.

In our example, the shell command name for our tool is new-ml-yacc. When looking for this command in the filesys-
tem, CM first tries to treat it as a path anchor (see Section 3.3). For example, suppose new-ml-yacc is mapped to
/bin. In this case the command to be invoked would be /bin/new-ml-yacc. If path anchor resolution fails, then the
command name will be used as-is. Normally this causes the shell’s path search mechanism to be used as a fallback.

Tools.registerStdShellCmdTool creates the class and installs the tool for it. The arguments must be specified
as follows:

tool a descriptive name of the tool (used in error messages); type: string

class the name of the class; the string must not contain upper-case letters; type: string

suffixes a list of file name suffixes that let CM automatically recognize files of the class; type: string list

41

cmdStdPath a function that returns the command string and required command-line options for the tool; type: unit
-> string * string list.

template an optional string that describes how the command line is to be constructed from pieces;
The string is taken verbatim except for embedded % format specifiers:

%c the command name (i.e., the elaboration of cmdStdPath)
%s the source file name in native pathname syntax
%nt the n-th target file in native pathname syntax;

(n is specified as a decimal number, counting starts at 1, and each target file name is constructed from the
corresponding extensionStyle entry; if n is 0 (or missing), then all targets—separated by single spaces—
are inserted; if n is not in the range between 0 and the number of available targets, then %nt expands into
itself)

%no the n-th tool parameter;
(named sub-option parameters are ignored; n is specified as a decimal number, counting starts at 1; if n is 0
(or missing), then all options—separated by single spaces—are inserted; if n is not in the range between 0 and
the number of available options, then %no expands into itself)

%x the character x (where x is neither c, nor s, t, or o)

If no template string is given, then it defaults to "%c %s".

extensionStyle a specification of how the names of files generated by the tool relate to the name of the tool input file;
type: Tools.extensionStyle.
Currently, there are three possible cases:

1. “Tools.EXTEND l” says that if the tool source file is file then for each suffix sfx in (map #1 l) there will
be one tool output file named file.sfx. The list l consists of triplets where the first component specifies the
suffix string, the second component optionally specifies the member class name of the corresponding derived
file, and the third component is a function to calculate tool options for the target from those of the source.
(Argument and result type of these functions is Tools.toolopts option.)

2. “Tools.REPLACE (l1, l2)” says that given the base name base there will be one tool output file base.sfx for
each suffix sfx in (map #1 l2). Here, base is determined by the following rule: If the name of the tool input
file has a suffix that occurs in l1, then base is the name without that suffix. Otherwise the whole file name is
taken as base (just like in the case of Tools.EXTEND). As with Tools.EXTEND, the second components
of the elements of l2 can optionally specify the member class name of the corresponding derived file, and the
third component maps source options to target options.

3. “Tools.RENAME(l, gen)” uses the function gen to generate a list of output filenames from the base input
filename.
Note: the RENAME extension style was added in SML/NJ Version 110.84.

dflopts a list of tool options which is used for substituting %no fields in template (see above) if no options were
specified. (Note that the value of dflopts is never passed to the option mappers in Tools.EXTEND or Tools.
REPLACE.) Type: Tools.toolopts.

Examples for the EXTEND expansion style are tools such as ML-Yacc and ML-Lex, while others, e.g., ML-Burg, use the
REPLACE style (see Section 7.2).

12.2 Adding other classes

Adding a new class whose behavior is not covered by the mechanism described in Section 12.1 is not complicated either,
but it requires a bit more code.

42

12.2.1 Filename abstractions

CM represents filenames as something that could be called a filename closure. Essentially, what this means is that not only
a string is being remembered but also the context in which to interpret the string. For a relative path, context information
is the directory in which it is to be interpreted; for an anchored path, the context takes care of the anchoring.

The Tools module provides two abstract types related to this filename abstraction:

type presrcpath
type srcpath

Since many tools invoke external shell commands or perform other operation on physical files, it is often necessary to
obtain an actual native filename string from an abstract path:

val nativeSpec : srcpath -> string
val nativePreSpec : presrcpath -> string

It is important to remember that these two functions frequently return relative filenames, and such relative names must
be interpreted from within the right directory. This “right” directory is the directory that contains the CM description file
on whose behalf the tool’s rule was invoked. Rules that perform physical operations on files whose names result from
nativeSpec or nativePreSpec must therefore first switch to that directory. See the discussion of the context
argument to rule functions below.

Strings that can potentially be used as pathnames are being passed around as records containing a name- and a mkpath
field. The name field contains the string itself while mkpath is a “suspended” abstract version of the path.

A fresh pathmaker can be constructed from native strings using native2pathmaker, which like context is also an
argument to rule functions. This function takes care of interpreting relative strings within the correct context. (For this, it
is not even necessary to first switch the current working directory.)

Recall that filenames that appear in description files can be written using either “standard” or “native” syntax. The field
name will, thus, contain a string that can be in either of these two forms. However, CM will pass an mkpath function
that accounts for these syntactic differences and which also takes care of interpreting the string in the correct context.

When new name specifications are constructed by the tool, the appropriate mkpath function must be provided. For most
tools this will be a value constructed by applying native2pathmaker to some native filename string (because most
tools internally operate on native paths).

As shown above, there are two abstract path types: presrcpath and srcpath. The former can represent both directory
names and source file names, the latter can represent only source file names. To convert from presrcpath to srcpath,
use function Tools.srcpath:

val srcpath : presrcpath -> srcpath

This function enforces CM’s rule that there has to be at least one arc in every such name (i.e., that it cannot be just an
anchor).

One can also construct a new abstract path from an existing path by adding arcs at the end. The constructed path will
share its internal context with the old one.

val augment : presrcpath -> string list -> presrcpath

The list of strings must contain simple pathname arcs.

12.2.2 Adding a class and its rule

The interface to add arbitrary classes is the routine Tools.registerClass:

val registerClass : class * rule -> unit

43

Here, type class is simply synonymous to string; a class string is the name of the class to be registered. It must not
contain upper-case letters:

type class = string

Type rule is a function type. It describes the rule function that CM will invoke for every member of the new class. The
rule function is responsible for invoking the auxiliary mechanism necessary to bring its targets up-to-date. The function
result of the rule function describes to CM what the targets are. Thus, the function maps the specification of the given
member to its (partial) expansion:

type rule =
{ spec: spec,
native2pathmaker: string -> pathmaker,
context: rulecontext,
defaultClassOf: fnspec -> class option } ->

partial_expansion

The specification spec consists of the name of the member together with a function to produce its corresponding abstract
path (should that be necessary), the member’s optional class (in case it had been given explicitly), its tool options, and a
boolean flag that tells whether this member was the result of another tool:

type spec = { name: string,
mkpath: pathmaker,
class: class option,
opts: toolopts option,
derived: bool }

name: The name is the verbatim member string from the description file. Be sure not to use this string directly as a file
name (although some tools might use it directly for purposes other than file names). Instead, first convert it to an
abstract path (see mkpath below) and then convert back to a native file name string using one of nativeSpec or
nativePreSpec.

mkpath This is a function of type pathmaker that produces an abstract pathname corresponding to name. CM will
pass in different functions here depending on whether name was given in CM’s standard pathname syntax or in the
underlying operating system’s native syntax.

type pathmaker = unit -> presrcpath

class: This argument carries the class name if such a class name was explicitly specified. If the class was inferred from
the member name, then it will be set to NONE.

opts: Tool options are represented by a data structure resembling Lisp lists:

type fnspec = { name: string, mkpath: pathmaker }
datatype toolopt =

STRING of fnspec
| SUBOPTS of { name: string, opts: toolopts }

withtype toolopts = toolopt list

The nesting of SUBOPTS reflects the nesting of sub-option lists in the member’s tool option specification. Again,
names which are potentially to be interpreted as file names are represented by their original specification string and
a function mkpath to get the corresponding abstract path, thereby taking care of interpreting the name according
to its respective syntactic rules and its context. (Type fnspec is a slimmed-down version of type spec. It also
appears as the argument type of function defaultClassOf. See below.)

derived: This flag is set to true if the source file represented by the specification is the result of a another, earlier tool
invocation.

The other three arguments of a rule function are native2pathmaker, context, and defaultClassOf:

44

native2pathmaker: This function takes a string and produces a function of the same type as mkpath above. When the
rule constructs the specifications for its result files, it must provide the corresponding mkpath functions for those.
Since most tools internally operate on native pathnames, these mkpath functions will have to be constructed using
native2pathmaker.

context: The context argument of a rule represents the directory that contains the CM description file on whose behalf the
rule was invoked. It is represented as a higher-order function that invokes its function argument after temporarily
setting the working directory to the context directory and returns the result of this invocation after restoring the
original working directory. Not all rules require such a temporary change of directories, but those that do should
encapsulate all their work into a local function and then pass this function to the context.

type rulefn = unit -> partial_expansion
type rulecontext = rulefn -> partial_expansion

defaultClassOf: This function can be used to directly invoke CM’s internal classification mechanism, taking advantage
of any registered classifiers. The argument to be passed is of type fnspec, i.e., a record consisting of a name string
and a function to convert the string to its corresponding abstract path.

A (full) expansion consists of three lists: a list of ML files, a list of CM files, and a list of sources. A partial expansion is
a full expansion together with a list of specifications that still need to be expanded further.

type expansion =
{ smlfiles: (srcpath * Sharing.request * setup) list,
cmfiles: (srcpath * Version.t option * rebindings) list,
sources: (srcpath * { class: class, derived: bool}) list }

type partial_expansion = expansion * spec list

A rule always returns a partial expansion. CM will derive a full expansion by repeatedly applying rules until the list of
pending specification becomes empty.

Most rules (except those for classes sml and cm) leave the lists smlfiles and cmfiles empty. A tool that produces
an ML source file or a CM description file as output should put a specification for this file into the specification list of a
partial expansion, letting the rules for classes sml and cm take care of the rest. At this point we will therefore not dwell
on explanations for the types of these two fields.

The sources field is used to implement CM.sources (see Section 5.1.11). Therefore, the rule should include here
every file that it consumes if its implementer wishes to have it reported by CM.sources. (Do not include source files
that are produced by the rule because those will be reported by subsequent rules.)

12.2.3 Reporting errors from tools

When a rule encounters an error, it should raise the following exception, setting tool to a string describing the current
tool and msg to a diagnostic string describing the nature of the error:

exception ToolError of { tool: string, msg: string }

12.2.4 Adding a classifier

A classifier is a mechanism that enables CM to infer a member’s class from its name. Classifiers are invoked if no explicit
class was given. CM supports two kinds of classifiers: suffix classifiers and general classifiers.

datatype classifier =
SFX_CLASSIFIER of string -> class option

| GEN_CLASSIFIER of { name: string, mkfname: unit -> string } ->
class option

45

Most of the time classifiers look at the file name suffix as their only clue. This idea is captured by SFX CLASSIFIER
which carries a partial function from suffixes to class names. The function should return NONE if it does not know about
the given argument suffix.

The GEN CLASSIFIER constructor carries a similar function—the difference being that the entire member name is
passed to it. Moreover, the function can also invoke the mkfname argument to obtain a native filename string. This string
can at this point be used to perform actual filesystem operations.

Invocation of mkfname may raise exceptions, usually due to syntax errors in name that prevent it from being interpreted
as a filename. Tools that use mkfname should therefore be prepared to handle such exceptions.

Moreover, it is advisable not to over-use this feature, and not to perform extensive filesystem processing in order to
perform classification. Otherwise the presence of this classifier might cause considerable overhead.

By the way, suffix classifiers could be implemented as general classifiers, but using SFX CLASSIFIER for them is
slightly more efficient. CM extracts the suffix from the name only once and applies all suffix classifier before ever
considering any generic classifier. If some suffix classifier succeeds, there will be no overhead caused by any generic
classifier.

Function Tools.stdSfxClassifier is a simple wrapper around SFX CLASSIFIER and produces a classifier that
looks for precisely one suffix string.

val stdSfxClassifier : { sfx: string , class: class } -> classifier

Classifiers are registered with CM by invoking Tools.registerClassifier:

val registerClassifier : classifier -> unit

12.2.5 Miscellaneous

Structure Tools also provides a number of other types and functions with the purpose of making it easier to write rule
functions.

Filename extension: Many tools derive the names of their targets from the name of their source. As discussed in
Section 12.1, CM provides some support for this via values of type extensionStyle:

type tooloptcvt = toolopts option -> toolopts option
datatype extensionStyle =

EXTEND of (string * class option * tooloptcvt) list
| REPLACE of string list * (string * class option * tooloptcvt) list

These values can not only be passed to Tools.registerStdShellCmdTool but also be used to let CM perform
name extension directly. To do so, one must invoke function Tools.extend:

val extend : extensionStyle ->
(string * toolopts option) ->
(string * class option * toolopts option) list

Checking time stamps: A tool can check whether a given source file is older than all of its corresponding target files.

val outdated : string -> string list * string -> bool

In a call (Tools.outdated t (l, s)), t is the name of the tool, l is the list of targets (as native file names), and s
is the source (also as a native file name).

An alternative way of checking for outdated sources (in the style of the Noweb-tool; see Section 7.2.4) is the following:

val outdated’ : string ->
{ src: string, wtn: string, tgt: string } -> bool

46

The idea here is that if both tgt (“target”) and wtn (“witness”) exist, then tgt is considered outdated if wtn is older
than src. Otherwise, if tgt exists but wtn does not, then tgt is considered outdated if it is older than src. If tgt
does not exist, then it is always considered outdated.

File- and directory-creation: To open a text file for output in such a way that all directories leading up to it are created
when they do not already exist, use Tools.openTextOut:

val openTextOut : string -> TextIO.outstream

To create the same directories without opening the file (and without even creating it if it does not exist), use function
Tools.makeDirs:

val makeDirs : string -> unit

Note that the string passed to makeDirs is still the name of a file!

Option processing: For simple tools, the following function for “parsing” tool options can be useful:

val parseOptions :
{ tool : string, keywords : string list, options : toolopts } ->
{ matches : string -> toolopts option, restoptions : string list }

Given a list of accepted keywords, this function scans the tool options and collects occurrences of sub-option lists labelled
by one of these keywords. Any sub-option list that is not recognized and any keyword that occurs more than once will
be rejected as an error. The result consists of a function matches that can be uses to query each of the keywords. The
function also collects and returns all the STRING options.

Issuing diagnostics: Functions Tools.say and Tools.vsay both take a list of strings and output the concatenation
of these strings to the compiler’s standard control output stream (i.e., usually TextIO.stdOut). The difference between
say and vsay is that the former works unconditionally while the latter is controlled by CM.Control.verbose (see
Section 5.1.3).

Anchor-configurable strings: Mainly for the purpose of implementing anchor-configurable names for auxiliary shell
commands (such as ml-yacc), one can invoke Tools.mkCmdName:

val mkCmdName : string -> string

If m is a path anchor that points to d, then (mkCmdName m) returns d/m; otherwise it returns m.

12.3 Plug-in Tools

12.3.1 Automatically loaded, global plug-in tools

If CM encounters a member class name c that it does not know about, then it tries to load a plugin module named
$/c-tool.cm. If it sees a file whose name ends in suffix s for which no explicit member class has been specified in
the CM description file and for which automatic member classification fails, it will try to load a plugin module named
$/s-ext.cm. The so-loaded module can then register the required tool, thereby enabling CM to successfully deal with
the previously unknown member.

This mechanism makes it possible for new tools to be added by simply placing appropriately named plug-in libraries in
some convenient place and making the corresponding adjustments to the anchor environment. In other words, description
files $/c-tool.cm and $/s-ext.cm that correspond to general-purpose tools should be registered either by modifying
the global or the local path configuration file or by directly invoking functon CM.Anchor.anchor (see Section 5.1.4).
Actual description files for the tools’ implementations can then be placed in arbitrary locations.

47

12.3.2 Explicitly loaded, local plug-in tools

Some projects might want to use their own special-purpose tools for which a global installation is not convenient or not
appropriate. In such a case, the project’s description file can explicitly demand the tool to be registered temporarily. This
is the purpose of the special tool class tool. Example:

Library
structure Foo

is
bar-tool.cm : tool
foo.b : bar

Here, the member whose class is tool (i.e, bar-tool.cm) must be the CM description file of the tool’s implementation.
The difference to class cm is that the so-specified library does not become part of the current project but is loaded and
linked immediately via CM.load plugin, causing one or more new classes and their classifiers to be registered.

If we assume that loading bar-tool.cm causes a class bar to be registered with its associated rule (e.g., by invoking
Tools.registerStdShellCmdTool), the class name bar will be available for all subsequent members of the
current description file. Likewise, classifiers (e.g., filename suffixes) registered by bar-tool.cm will also be available.

The effect of registering classes and classifiers using class tool lasts until the end of the current description file and is
restricted to that file. This means that other description files that also want to use class bar will have to have their own
tool entry.1

Local tool classes and suffixes temporarily override any equally-named global classes or suffixes, respectively.

12.3.3 Locally declared suffixes

It is sometimes convenient to locally add another recognized filename suffix to an already registered class. This is the
purpose of the special tool class suffix. For example, a programmer who has named all ML files in such a way that file
names end in .ml could write near the beginning of the description file:

ml : suffix (sml)

For the remainder of the current description file, all such .ml-files will now be treated as members of class sml.

1Note that CM cannot enforce that the tool library actually register a class or a classifier. Any side-effects other than registering classes or classifiers
are beyond CM’s control and will not be undone once processing the current description file is complete.

48

Chapter 13

Parallel and distributed compilation

To speed up recompilation of large projects with many ML source files, CM can exploit parallelism that is inherent in the
dependency graph. Currently, the only kind of operating system for which this is implemented is Unix (OPSYS UNIX),
where separate processes are used. From there, one can distribute the work across a network of machines by taking
advantage of the network file system and the “rsh” facility.

To perform parallel compilations, one must attach compile servers to the currently running CM session. This is done using
function CM.Server.start, which has the following type:

structure Server : sig
type server
val start : { name: string,

cmd: string * string list,
pathtrans: (string -> string) option,
pref: int } -> server option

end

Here, name is an arbitrary string that is used by CM when issuing diagnostic messages concerning the server1 and cmd
is a value suitable as argument to Unix.execute.

The program to be specified by cmd should be another instance of CM—running in “slave mode”. To start CM in slave
mode, start sml with a single command-line argument of @CMslave. For example, if you have installed in /path/to/sml-
nj/bin/sml, then a server process on the local machine could be started by

CM.Server.start { name = "A", pathtrans = NONE, pref = 0,
cmd = ("/path/to/smlnj/bin/sml",

["@CMslave"]) };

To run a process on a remote machine, e.g., “thatmachine”, as compute server, one can use “rsh”.2 Unfortunately, at the
moment it is necessary to specify the full path to “rsh” because Unix.execute (and therefore CM.Server.start)
does not perform a PATH search. The remote machine must share the file system with the local machine, for example via
NFS.

CM.Server.start { name = "thatmachine",
pathtrans = NONE, pref = 0,
cmd = ("/usr/ucb/rsh",

["thatmachine",
"/path/to/smlnj/bin/sml",
"@CMslave"]) };

1Therefore, it is useful to choose name uniquely.
2On certain systems it may be necessary to wrap rsh into a script that protects rsh from interrupt signals.

49

You can start as many servers as you want, but they all must have different names. If you attach any servers at all, then
you should attach at least two (unless you want to attach one that runs on a machine vastly more powerful than your local
one). Local servers make sense on multi-CPU machines: start as many servers as there are CPUs. Parallel make is most
effective on multiprocessor machines because network latencies can have a severely limiting effect on what can be gained
in the distributed case. (Be careful, though. Since there is no memory-sharing to speak of between separate instances of
sml, you should be sure to check that your machine has enough main memory.)

If servers on machines of different power are attached, one can give some preference to faster ones by setting the pref
value higher. (But since the pref value is consulted only in the rare case that more than one server is idle, this will rarely
lead to vastly better throughput.) All attached servers must use the same architecture-OS combination as the controlling
machine.

In parallel mode, the master process itself normally does not compile anything. Therefore, if you want to utilize the
master’s CPU for compilation, you should start a compile server on the same machine that the master runs on (even if it is
a uniprocessor machine).

The pathtrans argument is used when connecting to a machine with a different file-system layout. For local servers,
it can safely be left at NONE. The “path transformation” function is used to translate local path names to their remote
counterparts. This can be a bit tricky to get right, especially if the machines use automounters or similar devices. The
pathtrans functions consumes and produces names in CM’s internal “protocol encoding” (see Section 13.1).

Once servers have been attached, one can invoke functions like CM.recomp, CM.make, and CM.stabilize. They
should work the way the always do, but during compilation they will take advantage of parallelism.

When CM is interrupted using Control-C (or such), one will sometimes experience a certain delay if servers are currently
attached and busy. This is because the interrupt-handling code will wait for the servers to finish what they are currently
doing and bring them back to an “idle” state first.

13.1 Pathname protocol encoding

A path encoded by CM’s master-slave protocol encoding does not only specify which file a path refers to but also, in
some sense, specifies why CM constructed this path in the first place. For example, the encoding a/b/c.cm:d/e.sml
represents the file a/b/d/e.sml but also tells us that it was constructed by putting d/e.sml into the context of
description file a/b/c.cm. Thus, an encoded path name consists of one or more colon-separated (:) sections, and each
section consists of slash-separated (/) arcs. To find out what actual file a path refers to, it is necessary to erase all arcs that
precede colons.

The first section is special because it also specifies whether the whole path was relative or absolute, or whether it was an
anchored path.

Anchored paths start with a dollar-symbol $. The name of the anchor is the string between this leading dollar-symbol
and the first occurence of a slash / within the first section. The remaining arcs of the first section are interpreted
relative to the current value of the anchor.

Absolute paths start either with a percent-sign % or a slash /. The canonical form is the one with the percent-sign: it
specifies the volume name between the % and the first slash. In the common case where the volume name is empty
(i.e, always on Unix systems), the path starts with /.

Relative paths are all other paths.

Encoded path names never contain white space. Moreover, the encoding for path arcs, volume names, or anchor names
does not contain special characters such as /, $, %, :, \, (, and). Instead, should white space or special characters occur
in the non-encoded name, then they will be encoded using the escape-sequence \ddd where ddd is the decimal value of
the respective character’s ordinal number (i.e, the result of applying Char.ord).

The so-called current arc is encoded as ., the parent arc uses .. as its representation. It might be that under some operating
systems the names . or .. do not actually refer to the current or the parent arc. In such a case, CM will encode the dots
in these names using the \ddd method, too.

50

When issuing progress messages, CM shows path names in a form that is almost the same as the protocol encoding. The
only difference is that arcs that precede colon-sign : are enclosed within parentheses to emphasize that they are “not really
there”. The same form is also used by CM.Library.descr.

13.2 Parallel bootstrap compilation

The bootstrap compiler3 with its main function CMB.make and the corresponding cross-compilation variants of the
bootstrap compiler will also use any attached compile servers. If one intends to exclusively use the bootstrap compiler,
one can even attach servers that run on machines with different architecture or operating system.

Since the master-slave protocol is fairly simple, it cannot handle complicated scenarios such as the one necessary for com-
piling the “init group” (i.e., the small set of files necessary for setting up the “pervasive” environment) during CMB.make.
Therefore, this will always be done locally by the master process.

3otherwise not mentioned in this document

51

Chapter 14

The sml command line

The SML/NJ interactive system—including CM—is started from the operating system shell by invoking the command
sml. This section describes those arguments accepted by sml that are related to (and processed by) CM.

CM accepts file names, mode switching flags, preprocessor definitions, and control parameters as arguments. All these
arguments are processed one-by-one from left to right.

14.1 File arguments

Names of ML source files and CM description files can appear as arguments in any order.

ML source files are recognized by their filename extensions (.sig, .sml, or .fun) and cause the named file to be
loaded via use at the time the argument is being considered. Names of ML source files are specified using the
underlying operating system’s native pathname syntax.

CM description files are recognized by their extension .cm. They must be specified in CM’s standard pathname syntax.
At the time the argument is being considered, the named library (or group) will be loaded by passing the name to
either CM.autoload or CM.make—depending on which mode switching flag (-a or -m) was specified last. The
default is -a (i.e., CM.autoload).

14.2 Mode-switching flags

By default, CM description files are loaded via CM.autoload. By specifying -m somewhere on the command line one
can force the system to use CM.make for all following description files up to the next occurence of -a. The -a flag
switches back to the default behavior, using CM.autoload, which will then again be in effect up to the next occurrence
of another -m.

Mode-switching flags can be specified arbitrarily often on the same command line.

14.3 Defining and undefining CM preprocessor symbols

The following options for defining and undefining CM preprocessor symbols can also occur arbitrarily often. Their effects
accumulate while processing the command line from left to right. The resulting final state of the internal preprocessor
registry becomes observable in the interactive system.

-Dv=n acts like (#set (CM.symval "v") (SOME n)).

52

-Dv is equivalent to -Dv=1.

-Uv acts like (#set (CM.symval "v") NONE).

14.4 Control Parameters

There are three kinds of control parameters:

help A request of help is one of -h, -hnum, or -H. In general, -hnum produces a help listing with all configurable
controls up to obscurity level num. If num is omitted, it defaults to 0. The -H flag requests a full help listing with
all controls.

current settings This is similar to requesting help—except -h and -H are replaced with -s and -S, respectively. Instead
of showing the help message associated with each control, this requests showing the current settings.

set a control A control value can be set using an argument of the form -Ccontrol=value, where control is the name of
a control and value is a string that can be parsed and converted to a new value appropriate for the type of the
control.

53

Chapter 15

Auxiliary scripts

15.1 Building stand-alone programs

The programmer should normally have no need to invoke CM.mk standalone (see Section 5.1.10) directly. Instead,
SML/NJ provides a command ml-build which does all the work. To be able to use ml-build, one must implement
a library exporting a structure that has some function suitable to be an argument to SMLofNJ.exportFn. Suppose the
library is called myproglib.cm, the structure is called MyProg, and the function is called MyProg.main. If one
wishes to produce a heap image file myprog one simply has to invoke the following command:

ml-build myproglib.cm MyProg.main myprog

The heap image is written only when needed: if a heap image exists and is newer than all ML sources involved, provided
that none of the ML sources have to be recompiled, ml-build will just issue a message indicating that everything is
up-to-date.

As in the case of sml, it is possible to define or undefine preprocessor symbols using -D or -U options (see Section 14.3).
These options must be specified before the three regular arguments. Thus, the full command line syntax is:

ml-build [DU-options] myproglib.cm MyProg.main myprog

15.1.1 Bootstrapping: How ml-build works

Internally, ml-build generates a temporary wrapper library containing a single call of SMLofNJ.exportFn as part
of the library’s module-initialization code. Once this is done, CM is started, CM.mk standalone is invoked (with the
main project description file, the generated wrapper library file, and the heap image name as arguments), and a bootlist
file is written. If all these steps were successful, ml-build invokes the (bare) SML/NJ runtime with a special option,
causing it to bootstrap using the bootlist file.

Each line of the bootlist file specifies one module to be linked into the final stand-alone program. The runtime system reads
these lines one-by-one, loads the corresponding modules, and executes their initialization code. Since the last module has
been arranged (by way of using the wrapper library from above) to contain a call of SMLofNJ.exportFn, initialization
of this module causes the program’s heap image to be written and the bootstrap procedure to terminate.

15.2 Generating dependencies for make

When ML programs are used as parts of larger projects, it can become necessary to use CM (or, e.g., ml-build as
described in Chapter 15.1) in a traditional makefile for Unix’ make. To avoid repeated invocations, the dependency
information that CM normally manages internally must be described externally so that make can process it.

54

For this purpose, it is possible to let CM’s dependency analyzer generate a list of files that a given ML program depends on
(see Section 5.1.11). The ml-makedepend scripts conveniently wraps this functionality in such a way that it resembles
the familiar makedepend facility found on many Unix installations for the use by C projects.

An invocation of ml-makedepend takes two mandatory arguments: the root description file of the ML program in
question and the name of the target that is to be used by the generated makefile entry. Thus, a typical command line has
the form:

ml-makedepend project.cm targetname

This will cause ml-makedepend to first look for a file named makefile and if that cannot be found for Makefile.
(An error message is issued if neither of the two exists.) After deleting any previously generated entry for this description-
target combination, the script will invoke CM and add up-to-date dependency information to the file.

Using the -f option it is possible to force an arbitrary programmer-specified file to be used in place of makefile or
Makefile.

Some of the files a CM-managed program depends on are stable libraries. Since the file names for stable libraries vary
according to current CPU architecture and operating system, writing them directly would require different entries for
different systems. To avoid this problem (most of the time1), ml-makedepend will use make-variables $(ARCH) and
$(OPSYS) as placeholders within the information it generates. It is the programmer’s responsibility to make sure that
these variables are set to meaningful values at the time make is eventually being invoked. This feature can be turned off
(causing actual file names to be used) by specifying the -n option to ml-makedepend.

In cases where the programmer prefers other strings to be used in place of $(ARCH) or $(OPSYS) (or both) one can
specify those strings using the -a and -o options, respectively.

Like ml-build (Chapter 15.1) and sml (Section 14.3), the ml-makedepend command also accepts -D and -U
command line options.

Thus, the full command line syntax for ml-makedepend is:

ml-makedepend [DU-options] [-n] [-f makefile] project.cm target
ml-makedepend [DU-options] [-a arch] [-o os] [-f makefile] project.cm target

(If -n is given, then any additional -a or -o options—while not illegal—will be ignored.)

1The careful reader may have noticed that because of CM’s conditional compilation it is possible that dependency information itself varies between
different architectures or operating systems.

55

Chapter 16

Example: Dynamic linking

Autoloading is convenient and avoids wasted memory for modules that should be available at the interactive prompt but
have not actually been used so far. However, sometimes one wants to be even more aggressive and save the space needed
for a function until—at runtime—that function is actually being dynamically invoked.

CM does not provide immediate support for this kind of dynamic linking, but it is quite simple to achieve the effect by
carefully arranging some helper libraries and associated stub code.

Consider the following module:

structure F = struct
fun f (x: int): int =

G.g x + H.h (2 * x + 1)
end

Let us further assume that the implementations of structures G and H are rather large so that it would be worthwhile to
avoid loading the code for G and H until F.f is called with some actual argument. Of course, if F were bigger, then we
also want to avoid loading F itself.

To achieve this goal, we first define a hook module which will be the place where the actual implementation of our
function will be registered once it has been loaded. This hook module is then wrapped into a hook library. Thus, we have
f-hook.cm:

Library
structure F_Hook

is
f-hook.sml

and f-hook.sml:

structure F_Hook = struct
local

fun placeholder (i: int) : int =
raise Fail "F_Hook.f: unitinialized"

val r = ref placeholder
in

fun init f = r := f
fun f x = !r x

end
end

The hook module provides a reference cell into which a function of type equal to F.f can be installed. Here we have
chosen to hide the actual reference cell behind a local construct. Accessor functions are provided to install something into
the hook (init) and to invoke the so-installed value (f).

56

With this preparation we can write the implementation module f-impl.sml in such a way that not only does it provide
the actual code but also installs itself into the hook:

structure F_Impl = struct
local

fun f (x: int): int =
G.g x + H.h (2 * x + 1)

in
val _ = F_Hook.init f

end
end

The implementation module is wrapped into its implementation library f-impl.cm:

Library
structure F_Impl

is
f-impl.sml
f-hook.cm
g.cm (* imports G *)
h.cm (* imports H *)

Note that f-impl.cm must mention f-hook.cm for f-impl.sml to be able to access structure F Hook.

Finally, we replace the original contents of f.sml with a stub module that defines structure F:

structure F = struct
local

val initialized = ref false
in

fun f x =
(if !initialized then ()
else if CM.make "f-impl.cm" then initialized := true
else raise Fail "dynamic linkage for F.f failed";
F_Hook.f x)

end
end

The trick here is to explicitly invoke CM.make the first time F.f is called. This will then cause f-impl.cm (and
therefore g.cm and also h.cm) to be loaded and the “real” implementation of F.f to be registered with the hook module
from where it will then be available to this and future calls of F.f.

For the new f.sml to be compiled successfully it must be placed into a library f.cm that mentions f-hook.cm and
$smlnj/cm.cm. As we have seen, f-hook.cm exports F Hook.f and $smlnj/cm.cm is needed because it exports
CM.make:

Library
structure F

is
f.sml
f-hook.cm
$smlnj/cm.cm (* or $smlnj/cm/full.cm *)

Beware! This solution makes use of $smlnj/cm.cm which in turn requires the SML/NJ compiler to be present. There-
fore, is worthwhile only for really large program modules where the benefits of their absence are not outweighed be the
need for the compiler.

57

Chapter 17

Some history

Although its programming model is more general, CM’s implementation is closely tied to the Standard ML programming
language [MTHM97] and its SML/NJ implementation [AM91].

The current version is preceded by several other compilation managers. Of those, the most recent went by the same name
“CM”, while earlier ones were known as IRM (Incremental Recompilation Manager) [HLPR94b] and SC (for Separate
Compilation) [HLPR94a]. CM owes many ideas to SC and IRM.

Separate compilation in the SML/NJ system heavily relies on mechanisms for converting static environments (i.e., the
compiler’s symbol tables) into linear byte stream suitable for storage on disks [AM94]. Unlike all its predecessors,
however, the current implementation of CM is integrated into the main compiler and no longer relies on the Visible
Compiler interface.

58

Bibliography

[AM91] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In Martin Wirsing, editor, 3rd
International Symp. on Prog. Lang. Implementation and Logic Programming, pages 1–13, New York, August
1991. Springer-Verlag.

[AM94] Andrew W. Appel and David B. MacQueen. Separate compilation for Standard ML. In Proc. SIGPLAN ’94
Symp. on Prog. Language Design and Implementation, pages 13–23. ACM Press, June 1994.

[ATW94] Rolf Adams, Walter Tichy, and Annette Weinert. The cost of selective recompilation and environment pro-
cessing. ACM TOSEM, 3(1):3–28, January 1994.

[BA97] Matthias Blume and Andrew W. Appel. Lambda-splitting: A higher-order approach to cross-module opti-
mizations. In Proc. 1997 ACM SIGPLAN International Conference on Functional Programming (ICFP’97),
pages 112–124. ACM Press, June 1997.

[BA99] Matthias Blume and Andrew W. Appel. Hierarchical modularity. ACM Trans. on Programming Languages
and Systems, 21(4):790–812, July 1999.

[Blu99] Matthias Blume. Dependency analysis for Standard ML. ACM Trans. on Programming Languages and
Systems, 21(4):813–846, July 1999.

[Fel79] S. I. Feldman. Make – a program for maintaining computer programs. In Unix Programmer’s Manual,
Seventh Edition, volume 2A. Bell Laboratories, 1979.

[GG93] Florent Guillaume and Lal George. ML-Burg Documentation. AT&T Bell Laboratories, 1993. Available
from http://smlnj.org.

[GR04] Emden Gansner and John Reppy, editors. The Standard ML Basis Library. Cambridge University Press,
2004. Available online at http://sml-family.org/Basis/.

[HLPR94a] Robert Harper, Peter Lee, Frank Pfenning, and Eugene Rollins. A Compilation Manager for Standard ML of
New Jersey. In 1994 ACM SIGPLAN Workshop on ML and its Applications, pages 136–147, 1994.

[HLPR94b] Robert Harper, Peter Lee, Frank Pfenning, and Eugene Rollins. Incremental recompilation for Standard
ML of New Jersey. Technical Report CMU-CS-94-116, Department of Computer Science, Carnegie-Mellon
University, February 1994.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, Second Edition. Prentice Hall,
Englewood Cliffs, New Jersey 07632, 1988.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML (Revised).
MIT Press, Cambridge, MA, 1997.

[Ram94] Norman Ramsey. Literate programming simplified. IEEE Software, 11(5):97–105, September 1994.

[TA90] David R. Tarditi and Andrew W. Appel. ML-Yacc, version 2.0, April 1990. Available from http://
smlnj.org.

59

http://smlnj.org
http://sml-family.org/Basis/
http://smlnj.org
http://smlnj.org

Appendix A

CM description file syntax

A.1 Lexical Analysis

The CM parser employs a context-sensitive scanner. In many cases this avoids the need for “escape characters” or other
lexical devices that would make writing description files cumbersome. (The downside of this is that it increases the
complexity of both documentation and implementation.)

The scanner skips all nestable SML-style comments (enclosed with (* and *)).

Lines starting with #line may list up to three fields separated by white space. The first field is taken as a line number and
the last field (if more than one field is present) as a file name. The optional third (middle) field specifies a column number.
A line of this form resets the scanner’s idea about the name of the file that it is currently processing and about the current
position within that file. If no file is specified, the default is the current file. If no column is specified, the default is the first
column of the (specified) line. This feature is meant for program-generators or tools such as noweb but is not intended
for direct use by programmers.

The following lexical classes are recognized:

Namespace specifiers: structure, signature, functor, or funsig. These keywords are recognized everywhere.

CM keywords: group, Group, GROUP, library, Library, LIBRARY, source, Source, SOURCE, is, IS, *, -. These
keywords are recognized everywhere except within “preprocessor” lines (lines starting with #) or following one of
the namespace specifiers.

Preprocessor control keywords: #if, #elif, #else, #endif, #error. These keywords are recognized only at the beginning
of the line and indicate the start of a “preprocessor” line. The initial # character may be separated from the rest of
the token by white space (but not by comments).

Preprocessor operator keywords: defined, div, mod, andalso, orelse, not. These keywords are recognized only when
they occur within “preprocessor” lines. Even within such lines, they are not recognized as keywords when they
directly follow a namespace specifier—in which case they are considered SML identifiers.

SML identifiers (mlid): Recognized SML identifiers include all legal identifiers as defined by the SML language defini-
tion. (CM also recognizes some tokens as SML identifiers that are really keywords according to the SML language
definition. However, this can never cause problems in practice.) SML identifiers are recognized only when they
directly follow one of the namespace specifiers.

CM identifiers (cmid): CM identifiers have the same form as those ML identifiers that are made up solely of letters,
decimal digits, apostrophes, and underscores. CM identifiers are recognized when they occur within “preprocessor”
lines, but not when they directly follow some namespace specifier.

Numbers (number): Numbers are non-empty sequences of decimal digits. Numbers are recognized only within “prepro-
cessor” lines.

60

Preprocessor operators: The following unary and binary operators are recognized when they occur within “preproces-
sor” lines: +, -, *, /, %, <>, !=, <=, <, >=, >, ==, =, ,̃ &&, ||, !. Of these, the following (“C-style”) operators are
considered obsolete and trigger a warning message1 as long as CM.Control.warn obsolete is set to true:
/, %, !=, ==, &&, ||, !.

Standard path names (stdpn): Any non-empty sequence of upper- and lower-case letters, decimal digits, and characters
drawn from ’ .;,!%&$+/<=>?@˜|#*-ˆ that occurs outside of “preprocessor” lines and is neither a namespace
specifier nor a CM keyword will be recognized as a stardard path name. Strings that lexically constitute standard
path names are usually—but not always—interpreted as file names. Sometimes they are simply taken as literal
strings. When they act as file names, they will be interpreted according to CM’s standard syntax (see Section 3.2).
(Member class names, names of privileges, and many tool optios are also specified as standard path names even
though in these cases no actual file is being named.)

Native path names (ntvpn): A token that has the form of an SML string is considered a native path name. The same rules
as in SML regarding escape characters apply. Like their “standard” counterparts, native path names are not always
used to actually name files, but when they are, they use the native file name syntax of the underlying operating
system.

Punctuation: A colon : is recognized as a token everywhere except within “preprocessor” lines. Parentheses () are
recognized everywhere.

A.2 EBNF for preprocessor expressions

Lexical conventions: Syntax definitions use Extended Backus-Naur Form (EBNF). This means that vertical bars | separate
two or more alternatives, curly braces {} indicate zero or more copies of what they enclose (“Kleene-closure”), and square
brackets [] specify zero or one instances of their enclosed contents. Round parentheses () are used for grouping. Non-
terminal symbols appear in this typeface; terminal symbols are underlined.

The following set of rules defines the syntax for CM’s preprocessor expressions (ppexp):

aatom → number | cmid | (asum) | (˜ | -) aatom
aprod → {aatom (* | div | mod) | / | % } aatom
asum → {aprod (+ | -)} aprod

ns → structure | signature | functor | funsig
mlsym → ns mlid
query → defined (cmid) | defined (mlsym)

acmp → asum (< | <= | > | >= | = | == | <> | !=) asum

batom → query | acmp | (not | !) batom | (bdisj)
bcmp → batom [(= | == | <> | !=) batom]
bconj → {bcmp (andalso | &&)} bcmp
bdisj → {bconj (orelse | ||)} bconj

ppexp → bdisj

A.3 EBNF for tool options

The following set of rules defines the syntax for tool options (toolopts):

pathname → stdpn | ntvpn
toolopts → { pathname [: ((toolopts) | pathname)] }

1The use of - as a unary minus also triggers this warning.

61

A.4 EBNF for export lists

The following set of rules defines the syntax for export lists (elst):

libkw → library | Library | LIBRARY
groupkw → group | Group | GROUP

sourcekw → source | Source | SOURCE
guardedexports → { export } (#endif | #else { export } #endif | #elif ppexp guardedexports)

restline → rest of current line up to next newline character
export → difference | #if ppexp guardedexports | #error restline

difference → intersection | difference - intersection
intersection → atomicset | intersection * atomicset

atomicset → mlsym | union | implicitset
union → ([elst])

implicitset → sourceset | subgroupset | libraryset
sourceset → sourcekw ((- | pathname))

subgroupset → groupkw ((- | pathname))
libraryset → libkw ((pathname) [(toolopts)])

elst → export { export }

A.5 EBNF for member lists

The following set of rules defines the syntax for member lists (members):

class → stdpn
member → pathname [: class] [(toolopts)]

guardedmembers → members (#endif | #else members #endif | #elif ppexp guardedmembers)
members → { (member | #if ppexp guardedmembers | #error restline) }

A.6 EBNF for library descriptions

The following set of rules defines the syntax for library descriptions (library). Notice that although the syntax used for
version is the same as that for stdpn, actual version strings will undergo further analysis according to the rules given in
Chapter 6:

version → stdpn
privilege → stdpn
lprivspec → { privilege | ({ privilege }) }

library → [lprivspec] libkw [[(version)] elst] (is | IS) members

A.7 EBNF for library component descriptions (group descriptions)

The main differences between group- and library-syntax can be summarized as follows:

• Groups use keyword group instead of library.

• Groups may have an empty export list.

• Groups cannot wrap privileges, i.e., names of privileges (in front of the group keyword) never appear within paren-
theses.

• Groups have no version.

• Groups have an optional owner.

62

The following set of rules defines the syntax for library component (group) descriptions (group):

owner → pathname
gprivspec → { privilege }

group → [gprivspec] groupkw [(owner)] [elst] (is | IS) members

63

Appendix B

Full signature of structure CM

Structure CM serves as the compilation manager’s user interface and also constitutes the major part of the API. The
structure is the (only) export of library $smlnj/cm.cm. The standard installation procedure of SML/NJ registers this
library for autoloading at the interactive top level.

signature CM = sig

val autoload : string -> bool
val make : string -> bool
val recomp : string -> bool
val stabilize : bool -> string -> bool

type ’a controller = { get : unit -> ’a, set : ’a -> unit }

structure Anchor : sig
val anchor : string -> string option controller
val reset : unit -> unit

end

structure Control : sig
val keep_going : bool controller
val verbose : bool controller
val parse_caching : int controller
val warn_obsolete : bool controller
val debug : bool controller
val conserve_memory : bool controller
val generate_index : bool controller

end

structure Library : sig
type lib
val known : unit -> lib list
val descr : lib -> string
val osstring : lib -> string
val dismiss : lib -> unit
val unshare : lib -> unit

end

structure State : sig
val synchronize : unit -> unit
val reset : unit -> unit
val pending : unit -> string list

end

64

structure Server : sig
type server
val start : { cmd : string * string list,

name : string,
pathtrans : (string -> string) option,
pref : int } -> server option

val stop : server -> unit
val kill : server -> unit
val name : server -> string

end

val sources :
{ arch: string, os: string } option ->
string ->
{ file: string, class: string, derived: bool } list option

val symval : string -> int option controller
val load_plugin : string -> bool

val mk_standalone :
bool option ->
{ project: string, wrapper: string, target: string } ->
string list option

end

structure CM : CM

65

Appendix C

Listing of all pre-defined CM identifiers

Alpha32 HP-PA PowerPC PowerPC Sparc IA32 IA32
Unix Unix MACOS Unix Unix Unix Win32

ARCH ALPHA 1
ARCH HPPA 1
ARCH PPC 1 1
ARCH SPARC 1
ARCH X86 1 1
OPSYS UNIX 1 1 1 1 1
OPSYS MACOS 1
OPSYS WIN32 1
BIG ENDIAN 1
LITTLE ENDIAN 1 1 1 1 1 1
SIZE 32 1 1 1 1 1 1 1
NEW CM 1 1 1 1 1 1 1
SMLNJ VERSION 110 110 110 110 110 110 110
SMLNJ MINOR VERSION 84 84 84 84 84 84 84

66

Appendix D

Listing of all CM-specific environment
variables

Most control parameters that affect CM’s operation can be adjusted using environment variables vs at startup time, i.e,
when the sml command is invoked. Each such parameter has a default setting. Default settings are determined at bootstrap
time, i.e., the time when the heap image for SML/NJ’s interactive system is built.1 At bootstrap time, it is possible to adjust
defaults by using a set of environment variables vb. In the current version of CM it is always the case that vs = vb. (In
older versions this was not the case.) If neither vs nor vb were set, a hard-wired fallback value will be used.

The rule for constructing the name vs (and vb) is the following: For each adjustable parameter x there is a name stem. If
the stem for x is s, then vs = vb = CM s.

Since the normal installation procedure for SML/NJ sets some of the vb variables at bootstrap time, there are two columns
with default values in the following table. The value labeled fallback is the one that would have been used had there been
no environment variable at bootrap time, the one labeled default is the one the user will actually see.

To save space, the table lists the stem but not the names for its associated (longer) vs and vb. For example, since the
the table shows VERBOSE in the row for CM.Control.verbose, CM’s per-session verbosity can be adjusted using
CM VERBOSE.

CM.Control.c stem type fallback default default’s meaning
verbose VERBOSE bool true same issue progess messages
debug DEBUG bool false same do not issue debug messages
keep going KEEP GOING bool false same quit on first error
(none) PATHCONFIG string see below see below central path configuration file
parse caching PARSE CACHING int 100 same at most 100 parse trees will be

cached in main memory
(none) LOCAL PATHCONFIG string see below same user-specific path configuration

file
warn obsolete WARN OBSOLETE bool true same issue warnings about obsolete

C-style operators in description
files

conserve memory CONSERVE MEMORY bool false same avoid repeated I/O operations by
keeping certain information in
main memory

The fallback for PATHCONFIG is /usr/lib/smlnj-pathconfig, but the standard installation overrides this and
uses $INSTALLDIR/lib/pathconfig (where $INSTALLDIR is the SML/NJ installation directory) instead.

The default for the “local” path configuration file is .smlnj-pathconfig. This file is located in the user’s home
directory (given by the environment variable $HOME).

Control parameters can also be set using command-line parameters (see Chapter 14).
1Normally this is the same as installation time, but for SML/NJ compiler hackers there is also a makeml script for the purpose of bootstrapping.

67

Appendix E

Listing of all class names and their tools

class file contents tool file name suffixes
sml ML source code built-in .sig, .sml, .fun
cm CM description file built-in .cm

mlyacc ML-Yacc grammar ml-yacc .grm, .y
mllex ML-Lex specification ml-lex .lex, .l

mlburg ML-Burg specification ml-burg .burg
noweb literate program noweb .nw
make makefile make
shell arbitrary shell command
tool CM library description file built-in

suffix (does not name a file) built-in
dir directory built-in (directories recognized automatically)

68

Appendix F

Available libraries

Compiler and interactive system of SML/NJ consist of several hundred individual compilation units. Like modules of
application programs, these compilation units are also organized using CM libraries.

Some of the libraries that make up SML/NJ are actually the same ones that application programmers are likely to use,
others exist for organizational purposes only. There are “plugin” libraries—mainly for the CM “tools” subsystem—
that will be automatically loaded on demand, and libraries such as $smlnj/cmb.cm can be used to obtain access to
functionality that by default is not present.

F.1 Libraries for general programming

Libraries listed in the following two tables provide a broad palette of general-purpose programming tools:1

name description installed loaded
$/basis.cm Standard Basis Library always auto
$/ml-yacc-lib.cm ML-Yacc library always no
$/ml-lpt-lib.cm Language Processing Tools library always no

The following libraries comprise the SML/NJ Library Suite. We list them in alphabetical order.

name description installed loaded
$/controls-lib.cm always no
$/html-lib.cm HTML 3 library optional no
$/html4-lib.cm HTML 4 library optional no
$/hash-cons-lib.cm hash-consing library optional no
$/inet-lib.cm internet programming utility library optional no
$/json-lib.cm JSON parsing, printing, and utility library library optional no
$/pp-extras-lib.cm additional pretty-printing devices optional no
$/pp-lib.cm pretty-printing library always no
$/reactive-lib.cm reactive programming library optional no
$/regexp-lib.cm regular expression library optional no
$/sexp-lib.cm S-Expression parsing and printing library optional no
$/uuid-lib.cm UUID generation library optional no
$/unix-lib.cm Unix programming utility library optional no
$/smlnj-lib.cm general-purpose utility library always no
$/xml-lib.cm XML parsing and printing library optional no

1Recall that anchored paths of the form $/x[/ · · ·] act as an abbreviation for $x/x[/ · · ·].

69

F.2 Libraries for controlling SML/NJ’s operation

The following table lists those libraries that provide access to the so-called visible compiler infrastructure and to the
compilation manager API.

name description installed loaded
$smlnj/compiler.cm
$smlnj/compiler/current.cm

visible compiler for current architecture always auto

$smlnj/compiler/compiler.cm structure Compiler (the visible compiler in one
big structure)

always no

$smlnj/cm.cm
$smlnj/cm/cm.cm

compilation manager always auto

$smlnj/cm/tools.cm API for extending CM with new tools always no
$/mllex-tool.cm plugin library for class mllex always on demand
$/lex-ext.cm plugin library for extension .lex always on demand
$/mlyacc-tool.cm plugin library for class mlyacc always on demand
$/grm-ext.cm plugin library for extension .grm always on demand
$/mlburg-tool.cm plugin library for class mlburg always on demand
$/burg-ext.cm plugin library for extension .burg always on demand
$/noweb-tool.cm plugin library for class noweb always on demand
$/nw-ext.cm plugin library for extension .nw always on demand
$/make-tool.cm plugin library for class make always on demand
$/shell-tool.cm plugin library for class shell always on demand
$/dir-tool.cm plugin library for class dir always on demand

F.3 Libraries for SML/NJ compiler hackers

The following table lists libraries that provide access to the SML/NJ bootstrap compiler. The bootstrap compiler is a
derivative of the compilation manager. In addition to being able to recompile SML/NJ for the “host” system there are also
cross-compilers that can target all of SML/NJ’s supported platforms.

name description installed loaded
$smlnj/cmb.cm
$smlnj/cmb/current.cm

bootstrap compiler for current architecture and OS always no

$smlnj/cmb/alpha32-unix.cm bootstrap compiler for Alpha/Unix systems always no
$smlnj/cmb/hppa-unix.cm bootstrap compiler for HP-PA/Unix systems always no
$smlnj/cmb/ppc-macos.cm bootstrap compiler for PowerPC/Unix systems always no
$smlnj/cmb/ppc-unix.cm bootstrap compiler for PowerPC/MacOS systems always no
$smlnj/cmb/sparc-unix.cm bootstrap compiler for Sparc/Unix systems always no
$smlnj/cmb/x86-unix.cm bootstrap compiler for IA32/Unix systems always no
$smlnj/cmb/x86-win32.cm bootstrap compiler for IA32/Win32 systems always no
$smlnj/compiler/alpha32.cm visible compiler with backend for Alpha-specific cross-

compiler
always no

$smlnj/compiler/hppa.cm visible compiler with backend for HP-PA-specific cross-
compiler

always no

$smlnj/compiler/ppc.cm visible compiler with backend for PowerPC-specific cross-
compiler

always no

$smlnj/compiler/sparc.cm visible compiler with backend for Sparc-specific cross-
compiler

always no

$smlnj/compiler/x86.cm visible compiler with backend for IA32-specific cross-
compiler

always no

$smlnj/compiler/all.cm visible compiler, backends and bootstrap compilers for all
architectures

always no

$/pgraph.cm definition of “portable dependency graph” data structure always no
$/pgraph-util.cm utility routines for use with portable dependency graphs optional no

70

F.4 Internal libraries

For completeness, here is the list of other libraries that are part of SML/NJ’s implementation:

name description installed loaded
$SMLNJ-MLRISC/Lib.cm utility library for MLRISC backend always no
$SMLNJ-MLRISC/Control.cm control facilities for MLRISC backend always no
$SMLNJ-MLRISC/Graphs.cm control flow graphs for MLRISC backend always no
$SMLNJ-MLRISC/Visual.cm visualization for MLRISC always no
$SMLNJ-MLRISC/MLRISC.cm architecture-neutral core of MLRISC backend always no
$SMLNJ-MLRISC/MLTREE.cm utility routines for dealing with mltree data struc-

tures
always no

$SMLNJ-MLRISC/ALPHA.cm Alpha-specific MLRISC backend always no
$SMLNJ-MLRISC/HPPA.cm HP-PA-specific MLRISC backend always no
$SMLNJ-MLRISC/PPC.cm PowerPC-specific MLRISC backend always no
$SMLNJ-MLRISC/SPARC.cm Sparc-specific MLRISC backend always no
$SMLNJ-MLRISC/IA32.cm IA32-specific MLRISC backend always no
$/pickle-lib.cm utility library for compiler and CM always no
$smlnj/viscomp/core.cm architecture-neutral core of compiler always no
$smlnj/viscomp/alpha32.cm Alpha-specific part of compiler always no
$smlnj/viscomp/hppa.cm HP-PA-specific part of compiler always no
$smlnj/viscomp/ppc.cm PowerPC-specific part of compiler always no
$smlnj/viscomp/sparc.cm Sparc-specific part of compiler always no
$smlnj/viscomp/x86.cm IA32-specific part of compiler always no
$smlnj/init/init.cmi initial “glue”; implementation of pervasive environ-

ment
always no

$smlnj/internal/cm-sig-lib.cm signatures CM and CMB always no
$smlnj/internal/srcpath-lib.cm implementation of an internal “source path” abstrac-

tion used by the compilation manager
always no

$smlnj/internal/cm-lib.cm implementation of CM (not yet specialized to spe-
cific backends)

always no

$smlnj/internal/cm0.cm specialization of compilation manager to host com-
piler

always no

$smlnj/internal/intsys.cm root library, containing interactive system and glue
for all the other parts

always no

Libraries for the MLRISC backend have internal dependencies. However, when referring to a $SMLNJ-MLRISC/lib.cm
library, all anchor names that correspond to these dependencies are still unbound. Thus, a client would have to pro-
vide its own bindings for them.2 There is an analogous set of library names of the form $smlnj/MLRISC/lib.cm
which provides the SML/NJ-specific bindings for all the anchors. In practice this means that if one refers to, e.g.,
$smlnj/MLRISC/MLRISC.cm, one will implicitly pick up $smlnj/MLRISC/Graphs.cm, and the $Graphs.cm
anchor within the former will be resolved to the latter. On the other hand, when referring directly to the “raw” library
$SMLNJ-MLRISC/MLRISC.cm, one still can (and must) provide one’s own binding for $Graphs.cm.

2The anchor names coincide with the lib.cm components of the above names.

71

Appendix G

Exports of library $smlnj/cm/tools.cm

As described in Chapter 12, it is possible to extend CM’s set of available tools using the programming interface provided
by structure Tools. This structure—together with its corresponding signature TOOLS—is exported by library
$smlnj/cm/tools.cm. The same library also exports structure Sharing, structure Version, and a
corresponding signature VERSION.

G.1 The public signature of structure Tools

signature TOOLS = sig

type class = string

type srcpath
type presrcpath

type rebindings = { anchor: string, value: presrcpath } list

val nativeSpec : srcpath -> string
val nativePreSpec : presrcpath -> string
val srcpath : presrcpath -> srcpath
val augment : presrcpath -> string list -> presrcpath

exception ToolError of { tool: string, msg: string }

type pathmaker = unit -> presrcpath

type fnspec = { name: string, mkpath: pathmaker }

datatype toolopt =
STRING of fnspec

| SUBOPTS of { name: string, opts: toolopts }
withtype toolopts = toolopt list

type tooloptcvt = toolopts option -> toolopts option

type spec = { name: string, mkpath: pathmaker,
class: class option, opts: toolopts option, derived: bool }

type setup = string option * string option (* (pre, post) *)

type expansion =

72

{ smlfiles: (srcpath * Sharing.request * setup) list,
cmfiles: (srcpath * Version.t option * rebindings) list,
sources: (srcpath * { class: class, derived: bool}) list }

type partial_expansion = expansion * spec list

type rulefn = unit -> partial_expansion
type rulecontext = rulefn -> partial_expansion
type rule = { spec: spec,

native2pathmaker: string -> pathmaker,
context: rulecontext,
defaultClassOf: fnspec -> class option }

-> partial_expansion

val registerClass : class * rule -> unit

datatype classifier =
SFX_CLASSIFIER of string -> class option

| GEN_CLASSIFIER of { name: string, mkfname: unit -> string } ->
class option

val stdSfxClassifier : { sfx: string , class: class } -> classifier

datatype extensionStyle =
EXTEND of (string * class option * tooloptcvt) list

| REPLACE of string list * (string * class option * tooloptcvt) list

val extend : extensionStyle ->
(string * toolopts option) ->
(string * class option * toolopts option) list

val outdated : string -> string list * string -> bool

val outdated’ :
string -> { src: string, wtn: string, tgt: string } -> bool

val openTextOut : string -> TextIO.outstream

val makeDirs : string -> unit

val registerClassifier : classifier -> unit

val parseOptions :
{ tool : string, keywords : string list, options : toolopts } ->
{ matches : string -> toolopts option, restoptions : string list }

val say : string list -> unit
val vsay : string list -> unit

val mkCmdName : string -> string

val registerStdShellCmdTool :
{ tool: string, class: string, suffixes: string list,

cmdStdPath: string, extensionStyle: extensionStyle,
template: string option, dflopts: toolopts }

-> unit
end

structure Tools :> TOOLS

73

G.2 The public signature of structure Version

signature VERSION = sig

type t

val fromString : string -> t option
val toString: t -> string
val compare : t * t -> order

val nextMajor : t -> t

val zero: t
end

structure Version :> VERSION

G.3 The public signature of structure Sharing

structure Sharing : sig
datatype request = PRIVATE | SHARED | DONTCARE
datatype mode = SHARE of bool | DONTSHARE

end

74

Appendix H

Change history

Here is a history of updates to this manual and to CM.

SML/NJ 110.99.3

Update the list of libraries in Appendix F to include all of the SML/NJ libraries.

SML/NJ 110.84

Added RENAME extension style for specifying the generated files of a tool (see Chapter 12).

Added descriptions of the ASDLGen, ML-Antlr, and ML-ULex builtin tools (see Section 7.2).

SML/NJ 110.79

Documentation update

SML/NJ 110.73

boolean literals (2011/05/13)

SML/NJ 110.64

CM_TOLERATE_TOOL_FAILURES (2007/05/23)

SML/NJ 110.57

changes to the way that $ libraries are named internally (2005/11/15)

SML/NJ 110.54

CM.redump_heap (2005/05/16)

SML/NJ 110.50

lazysml tool; change to .cm file syntax (see 2004/09/27)

SML/NJ 110.40

Original version of manual.

75

	Introduction
	The CM model
	Basic philosophy
	Description files
	Invoking CM
	Members of a library
	Name visibility
	Library components (groups)
	Multiple occurences of the same member
	Stable libraries
	Top-level groups

	Naming objects in the file system
	Motivation
	Basic rules
	Anchor environments
	Anchor configuration
	When to use anchor environments

	Export lists
	Using CM
	Structure CM
	Compiling
	Linking and execution
	Registers
	Path anchors
	Setting CM variables
	Library registry
	Internal state
	Compile servers
	Plug-ins
	Support for stand-alone programs
	Finding all sources

	The autoloader
	Sharing of state
	Sharing annotations
	Sharing with the interactive system

	Version numbers
	How versions are compared
	Version checking

	Member classes and tools
	Tool parameters
	Parameters for class sml
	Parameters for class cm
	Parameters for classes tool and suffix

	Built-in tools
	Program generators
	Shell
	Make
	Noweb
	Dir

	Conditional compilation
	CM variables
	Querying exported definitions
	Explicit errors

	Access control
	The pervasive environment
	Files
	Time stamps
	Index files

	Extending the tool set
	Adding simple shell-command tools
	Adding other classes
	Filename abstractions
	Adding a class and its rule
	Reporting errors from tools
	Adding a classifier
	Miscellaneous

	Plug-in Tools
	Automatically loaded, global plug-in tools
	Explicitly loaded, local plug-in tools
	Locally declared suffixes

	Parallel and distributed compilation
	Pathname protocol encoding
	Parallel bootstrap compilation

	The sml command line
	File arguments
	Mode-switching flags
	Defining and undefining CM preprocessor symbols
	Control Parameters

	Auxiliary scripts
	Building stand-alone programs
	Bootstrapping: How ml-build works

	Generating dependencies for make

	Example: Dynamic linking
	Some history
	CM description file syntax
	Lexical Analysis
	EBNF for preprocessor expressions
	EBNF for tool options
	EBNF for export lists
	EBNF for member lists
	EBNF for library descriptions
	EBNF for library component descriptions (group descriptions)

	Full signature of structure CM
	Listing of all pre-defined CM identifiers
	Listing of all CM-specific environment variables
	Listing of all class names and their tools
	Available libraries
	Libraries for general programming
	Libraries for controlling SML/NJ's operation
	Libraries for SML/NJ compiler hackers
	Internal libraries

	Exports of library $smlnj/cm/tools.cm
	The public signature of structure Tools
	The public signature of structure Version
	The public signature of structure Sharing

	Change history

