
ML-Burg — Documentation

Florent Guillaume Lal George

École Normale Supérieure Room 2A-426
45, rue d’Ulm AT&T Bell Laboratories

75005 Paris, France Murray Hill, NJ 07922
Florent.Guillaume@ens.fr george@research.att.com

June 23, 1993

©1993 L. George, F. Guillaume.

1 Introduction

ML-Burg is a Standard ML version of the iburg tool developed by Fraser,
Hanson and Proebsting [3]. ML-Burg generates a Standard ML program to
perform bottom-up rewriting of an input tree. Cost information associated
with each rewrite rule is used to derive the minimum rewrite cost for the
entire tree. A successful reduction corresponds to rewriting the input tree to
a special non-terminal symbol called the start non-terminal. Upon successful
reduction, facilities are provided to walk the tree emitting semantic actions
corresponding to the rules that matched.

Like iburg, ML-Burg generates a program that consists of a large case
statement. Indeed, the i in iburg was meant to indicate interpreted-burg
to distinguish it from table driven implementations of similar tools [1, 4].
We arbitrarily decided to drop the i (no pun intended).

Given a system of rewrite rules augmented with costs, called the ML-Burg
specification, ML-Burg generates the following:

1

• signature BURM_INPUT_SPEC

• signature BURM

• structure BurmOps

• functor BurmGen(In : BURM_INPUT_SPEC) : BURM

The signature BURM_INPUT_SPEC specifies utilities over the user supplied in-
put tree. The required matcher is obtained by applying the functor BurmGen
to a structure matching BURM_INPUT_SPEC.

2 ML-Burg specifications

Figure 1 shows the extended BNF grammar for ML-Burg specifications.
Grammar symbols are italicized, terminals are in typewriter font, {X}
represents zero or more occurrences of X, [X] means X is optional, cost is
a non-negative integer, trailer and header are arbitrary pieces of text, and
everything else is an identifier. An identifier is a leading alphabet followed
by zero or more alphanumeric characters and underscores. Comments are
delimited by (*, and *).

A specification consists of three parts: declaration, rule, and trailer, sepa-
rated by %%.

A %term declaration enumerates the operators or function symbols used to
construct nodes of the tree. There must be at least one %term declaration
for a valid specification. The %start declaration, which defaults to the left
hand side nonterminal of the first rule, declares the start non-terminal. The
header part is text that is included verbatim at the beginning of the matcher.
The names of the modules generated by ML-Burg may be changed by using
a %sig declaration (case of signame is not significant). For example if we
had a line “%sig glop” in the declarations, the generated names would be
GlopOps, GLOP INPUT SPEC, GLOP and GlopGen. This allows for multiple
matchers in the same program.

The rule-part of the specification (following the first %%) describes the tree
grammar or the rewrite rule system to use. The nonterminal : tree specifi-
cation can be viewed a rewrite rule of the form, nonterminal ← tree. Each

2

spec → declaration %% {rule} %% trailer

declaration → %term op {| op}
| %start nonterminal
| %termprefix termprefix
| %ruleprefix ruleprefix
| %sig signame
| %{ header %}

op → operator [= opname]

rule → nonterminal : tree = rulename [(cost)] ;

tree → nonterminal

| operator [(tree{,tree})]

Figure 1: EBNF ML-Burg specifications

operator used in a tree must be mentioned in a %term declaration. The spe-
cial case of nonterminal ← nonterminal, specifies a chain rule. Associated
with each rule is an optional cost that defaults to zero. The rulename, which
is not necessarily unique, is used to identify the rule during the emission of
semantic actions. It is important to note that the same rulename may be
associated with multiple rules.

The trailer is an arbitrary piece of text that is inserted at the end of the
generated matcher. This is typically segments of program that will perform
the semantic actions.

Figure 2 show a sample specification taken from [3]. The %termprefix, and
%ruleprefix are explained in subsequent sections.

3 Interface between the matcher and the program

3.1 structure BurmOps

The structure BurmOps declares a type ops that enumerates the operators
or functions symbols specified in %term declarations of the specification.
The matcher cannot extract the operator from the user supplied tree, or
establish a correspondence between nodes in the tree and operators in the
specification.

3

%term ASGNI | ADDI | CVCI | INDIRC | I0I | ADDRLP | CNSTI

%termprefix T_

%start stmt

%%

stmt: ASGNI(disp,reg) = stmt_ASGNI_disp_reg (1);

stmt: reg = stmt_reg;

reg: ADDI(reg,rc) = reg_ADDI_reg_rc (1);

reg: CVCI(INDIRC(disp)) = reg_CVCI_INDIRC_disp (1);

reg: I0I = reg_I0I;

reg: disp = reg_disp (1);

disp: ADDI(reg,con) = disp_ADDI_reg_con;

disp: ADDRLP = disp_ADDRLP;

rc: con = rc_con;

rc: reg = rc_reg;

con: CNSTI = con_CNSTI;

con: I0I = con_I0I;

%%

Figure 2: Example of ML-Burg specification.

In the example above (Figure 2), the user may have defined the tree to be:

datatype tree = ...

| CNSTI of int

...

The data constructor CNSTI is of arity 1, whereas, in the specification it is
used with arity 0.

For the example, the generated structure would be:

structure BurmOps = struct

datatype ops =

T_ASGNI

| T_ADDI

| T_CVCI

| T_INDIRC

| T_I0I

| T_ADDRLP

| T_CNSTI

end

4

The %termprefix, if specified, is used to prepend the termprefix to each op-
erator. If the optional =opname is specified with the operator, then opname
is used in the datatype ops instead of the operator.

3.2 signature BURM INPUT SPEC

The signature BURM_INPUT_SPEC, shown below, specifies the interface to
the user supplied input tree.

signature BURM_INPUT_SPEC = sig

type tree

val opchildren : tree -> BurmOps.ops * (tree list)

end

It contains:

• The type tree of trees on which the program operates.

• A function opchildren which takes a tree and returns the operator
(of type BurmOps.ops) at the root of this tree, and a list of children
of this root (a tree list).

The function opchildren must return the children in the order in which
they appear in the rules (which is the only order the matcher knows of). For
example, if the root of the tree corresponds to the operator ASGNI (Figure 2,
the first element of the list must be the tree corresponding to disp, and the
second to reg.

3.3 signature BURM

The structure generated by the functor BurmGenmatches the signature BURM.
Specified in BURM are:

• An exception NoMatch, which is raised if reduce is called on a tree
which cannot be rewritten to the start non-terminal.

• The type tree (the one passed to the functor).

5

• A datatype rule enumerating the rules of the tree grammar. This
datatype is defined by prepending to each rulename, the ruleprefix
from a ruleprefix declaration (if any). The arity of each constructor
is equal to the number of non-terminal symbols in the pattern. Each
(rule,tree) pair specifies the rule and the tree that matched each
non-terminal symbol. These pairs describe the remaining steps in the
reduction.

• A function reduce which takes a tree and returns a pair (rule * tree).
As described above, the rule describes the best match that generated
the start non-terminal, and the tree is the original input tree.

In the example above, the signature BURM generated is:

signature BURM = sig

exception NoMatch

type tree

datatype rule =

stmt_ASGNI_disp_reg of (rule*tree) * (rule*tree)

| stmt_reg of (rule*tree)

| reg_ADDI_reg_rc of (rule*tree) * (rule*tree)

| reg_CVCI_INDIRC_disp of (rule*tree)

| reg_I0I

| reg_disp of (rule*tree)

| disp_ADDI_reg_con of (rule*tree) * (rule*tree)

| disp_ADDRLP

| rc_con of (rule*tree)

| rc_reg of (rule*tree)

| con_CNSTI

| con_I0I

val reduce : tree -> (rule*tree)

end

The functions reduce is used as follows: given a tree t0, reduce returns an
initial pair (r0, t0) (it returns t0 to make the user program simpler - Section
4). r0 describes the first rule to apply to t0 to perform the optimal reduction.
This rule, except in trivial cases, will have in its pattern several nonterminals
which represent other trees to be reduced. To that end, the constructor r0
carries the pairs (r1, t1), . . . , (rn, tn) of its children. (ri, ti) corresponds to

6

the ith nonterminal in the tree pattern for the rule r0, when read from left
to right. These pairs can be used to find the rule to use to reduce each child.
In turn, the rules r1, . . . , rn carry information about their children.

Why return the tree in addition to each rule? Often, additional information
is stored in the tree, and it may be necessary to access this information when
a semantic action is executed. This information may include constants like
integers, reals or string, or more complex objects like symbol table informa-
tion.

4 Example

Using the ML-Burg specification of Figure 2, a sample input to provide to
the functor BurmGen is shown below:

structure In : BURM_INPUT_SPEC = struct

structure BO = BurmOps

datatype tree =

ASGNI of tree * tree

| ADDI of tree * tree

| CVCI of tree

| INDIRC of tree

| I0I

| ADDRLP of string

| CNSTI of int

fun opchildren t =

case t of

ASGNI(t1,t2) => (BO.T_ASGNI, [t1,t2])

| ADDI(t1,t2) => (BO.T_ADDI, [t1,t2])

| CVCI(t1) => (BO.T_CVCI, [t1])

| INDIRC(t1) => (BO.T_INDIRC,[t1])

| I0I => (BO.T_I0I, [])

| ADDRLP _ => (BO.T_ADDRLP,[])

| CNSTI _ => (BO.T_CNSTI, [])

end

In Figure 3 we show a sample function called walk that performs semantic
actions. The semantic actions merely prints out the rules that applied as-
suming the children of each node are traversed from left to right. Note that

7

in the action corresponding to the reg_CVCI_INDIRC_disp rule, the recur-
sive call to walk, specifically walk disp, steps over the CVCI and INDIRC

nodes — yet, information associated with the CVCI or INDIRC is available
to this rule.

A graphical representation of sampleTree and the result of executing:

- open Example; doit sampleTree;

is shown in Figure 4.

5 Using mlburg and debugging

The executable for ML-Burg is usually called mlburg. When mlburg is
presented with a file name filename.burg, a file filename.sml is created -
assuming no errors were encountered. This generated file will contain all
the modules described above, and can be directly loaded into an interactive
session. The error messages displayed during the execution of mlburg are
self-explanatory.

During execution, a NoMatch is raised when the tree cannot be reduced to
the start non-terminal. For example, suppose that the function reduce was
called on the tree CNSTI. Obviously, CNSTI can only be reduced to a con

and an rc. The matcher would then print the message :

No Match on nonterminal 0

Possibilities were :

rule 9 with cost 0

rule 11 with cost 0

The nonterminals and rules are printed using integers, but a correspondence
between these integers and the identifiers used in the specification can be
found at the beginning of the generated SML file.

Note, however, that such debugging information will only be useful if the
incorrect match occurs at the first level of the reduction to the start non-
terminal. If reduce is called with ASGNI(I0I,x), the problem occurs deeper,
because it is ultimately I0I that cannot be reduced to a disp, and the fact

8

structure Example = struct

structure Burm = BurmGen (In)

open In

local val num = ref 1 in

fun new s = (s^(makestring (!num)) before inc num)

end

fun walk (Burm.stmt_ASGNI_disp_reg (disp,reg), _) =

let

val (disp’,reg’) = (walk disp, walk reg)

val stmt = new "stmt"

in

say (stmt^" <- ASGNI ("^disp’^" + "^reg’^")\n"); stmt

end

...

| walk (Burm.reg_CVCI_INDIRC_disp disp, _) =

let

val disp’ = walk disp

val reg = new "reg"

in

say (reg^" <- CVCI (INDIRC ("^disp’^"))\n"); reg

end

...

| walk (Burm.con_CNSTI, CNSTI i) =

let

val con = new "con"

in

say (con^" <- CNSTI "^(makestring i)^"\n"); con

end

...

| walk _ = (print "Error, bad match in walk\n"; raise Match)

fun doit t = walk (Burm.reduce t)

val sampleTree = ASGNI (ADDRLP "p",

ADDI (CVCI (INDIRC (ADDRLP "c")),

CNSTI 4))

end

Figure 3: Example program.

9

ADDRLP
c

4

P

ASGNI

ADDIADDRLP

CVCI CNSTI

INDIRC

disp1 <- ADDRLP p

disp2 <- ADDRLP c

reg3 <- CVCI (INDIRC (disp2))

con4 <- CNSTI 4

disp5 <- ADDI (reg3,con4)

reg6 <- disp5

stmt7 <- ASGNI (disp1 + reg6)

Figure 4: sampleTree and the produced output.

10

that the whole tree cannot be reduced to the start non-terminal is only a
consequence of it. In such cases, the matcher will only give the message :

No Match on nonterminal 0

Possibilities were :

At this stage it would be necessary to check the completeness of the rewrite
system. Automated tools to do this, may be expected in the future[2].

References

[1] Balachandran, A., Dhamdhere, D. M., and Biswas, S. Efficient
retargetable code generation using bottom-up tree pattern matching.
Computer Languages 15(3) (1990), 127–140.

[2] Emmelmann, H. Testing completeness of code selector specifications.
Springer-Verlag, 1992, pp. 163–175.

[3] Fraser, C. W., Hanson, D. R., and Proebsting, T. A. Engineer-
ing a simple, efficient code generator generator. In Letters on Program-
ming Languages and Systems (1992), ACM.

[4] Proebsting, T. A. Simple and efficient burs table generation. In SIG-
PLAN ’92 Conf. on Programming Language Design and Implementation
(June 1992), ACM, pp. 331–340.

11

