
Simple cpik Tutorial

by Alain Gibaud
alain.gibaud@free.fr

Version 0.5.x Rev c

January 14, 2010

Contents

1 What you need 1

2 Tutorial #1 - Blinking LED 3

2.1 Header files . 3

2.2 Config bits settings . 3

2.3 Microcontroller initialization . 5

2.4 Delay function . 6

2.5 Main function . 6

2.6 How to build the application . 7

3 Turorial #2 - Blinking LED with variable speed 8

3.1 A naive approach . 8

3.2 Using interrupts: a better approach . 9

4 Tutorial #3 - Using an HD44780 compatible LCD display 12

4.1 Using the LCD library API . 12

4.2 Using the stdio API . 14

5 Tutorial #4 - A digital Voltmeter 15

5.1 Analog to Digital module configuration . 15

5.2 Analog to Digital conversion . 16

5.3 Voltage display . 17

5.4 Voltmeter with bargraph display . 18

6 Contact 20

1 What you need

The figure 1 shows a schematic for the experimentation board used in this tutorial. It has been
designed to be as simple as possible. The device can be any 28-pin PIC18 device. Any other

1

PIC18 can be used, but pinout will be different. The presented software has been written for a
PIC18F2525 device. If you use another PIC flavor, it will be necessary to modify the CONFIG
bits settings and to verify if the used functionnalities are available.

Features:

1. No crystal, internal 8Mhz oscillator used. This is sufficient for experimentation but will not
be convenient if high timing precision is needed.

2. In situ device programming (no need to unplug the device)

3. Programming connector is compatible with PicKit2 programmer from Microchip (any other
TAIT or JDM programmer can be used with the appropriate connexion cable).

4. Board can be powered by an external power supply (15v DC), or from PicKit2 by setting the
JP7 jumper. You can use an external power source which is always on: it doesn’t prevent
device to enter programming mode when programmer sets MCLR to VPP. If external power
source is not used, the IC2 7805 regulator and D5 can be suppressed.

5. Data an Clock programming lines are decoupled by 47pF (or 33pF) ceramic capacitors to
ground. These capacitors dramatically improve the programming reliability, which is near
perfect.

This hardware is easy to build. Figure 2 shows a possible implementation (this is an experi-
mentation board, with wires welded on the bottom side and support for LCD display and RS232
interface). More basic implementations are suitable for this tutorial. You can see a crystal on this
picture, but it is not used here. The JP7 jumper is on the left side (red), near the programmer
connector.

Figure 1: Tutorial #1 - base schematic

2

2 Tutorial #1 - Blinking LED

The ”blinking LED” program is the ”hello word” program for microcontrollers: no way to avoid
it! It allows to test hardware and software installation.

2.1 Header files

The only mandatory header file to include is the register definition file for the target device.
It contains register definitions (PORTA, TRISA, etc.) as well as addresses of these registers.
Register definition headers are located in /usr/share/cpik/<version>/include so you must use
the #include <xxx> syntax (not #include "xxx"). There is no obvious reason to bypass this
inclusion and to write register definitions yourself.

Other headers used here are:

1. types.h : allows to use standard ANSI types instead of local ones, for portability purpose.
This header typedefs int8 t, uint8 t, int16 t, uint16 t, and so on.

2. macros.h : contains macro for bit manipulation (test, set, reset etc.).

#include <p18f2525.h>
#include <types.h>
#include <macros.h>

2.2 Config bits settings

Setting config bits is not difficult but needs attention. PIC18 devices have 14 config registers,
each of them must be properly populated. For PIC182525 devices, CONFIG1L, CONFIG3L and
CONFIG4H do not exist so you should not initialize them.

Figure 2: Tutorial #1 - experimentation board

3

The best way to know how to initialize config bits is to study the device data sheet.

Microchip standard asm headers contain symbolic constants to help config fuse initialisation but
I don’t feel them very handy. However, you can use these constants with #pragma _CONFIGxx, be-
cause they are not evaluated by the compiler, but directly passed to the assembler which generates
the final machine code. If you feel comfortable with them, do not hesitate to use them.

Another approach is to use pikdev as a code generator (see figure 3). The code generator for
config bits settings is a new feature (Version ≥ 1.2.1) which is very handy. Just open the dialog,
then right-click on the field you want to edit. A contextual menu allows you to choose one of
the possible options for this field. When the configuration process is terminated, you can get the
resulting code by two ways:

1. Just drag the ”C” icon to your source code. (Of course, drag the ”A” icon if you program in
assembly language).

2. Press the ”floppy” button. Two files are then generated in the project directory (config_bits.h
and config_bits.asm). You just have to include one of these files to get the proper config
settings. For example:
#include "config_bits.h"

From my point of view, the latter is more handy than the former, because you just have to press
the button, and rebuild your application when config bits are changed. Since the config bits are
saved in the project file, you can re-open the dialog and edit the config bits again at any moment.

Figure 3: Pikdev’s graphic interface for config bits code generator

Here are the config fuses initalization needed by the tutorial, with quick comments.

4

// not used
// #pragma _CONFIG1L 0xFF
// internal 8Mhz clock, both RA6 anf RA7 are usable as I/O
#pragma _CONFIG1H B’00001000’
// WDT not enabled, will be enabled by software if needed
#pragma _CONFIG2H B’00010000’
// PWRT disabled, BOR disabled
#pragma _CONFIG2L B’00011001’
// MCLR disabled, no AD on port B
#pragma _CONFIG3H B’00000000’
// not used
// #pragma _CONFIG3L 0xFF
// not used
// #pragma _CONFIG4H 0xFF
// no DEBUG, reset when stack overflow, no LVP
#pragma _CONFIG4L B’10000001’
// no protection
#pragma _CONFIG5H B’11000000’
// no protection
#pragma _CONFIG5L B’00001111’
// no protection
#pragma _CONFIG6H B’11100000’
// no protection
#pragma _CONFIG6L B’00001111’
// no protection
#pragma _CONFIG7H B’01000000’
// no protection
#pragma _CONFIG7L B’00001111’

2.3 Microcontroller initialization

Here begins the real job. We have to set various device registers to get the desired behaviour. The
main points are port direction configuration, interrupt configuration and clock speed configuration.
Initializations are grouped in a function, for structuration reason. Device registers are simply
accessed as C unsigned int variables using the standard names provided by Microchip. All these
variables are declared in the <p18f2525.h> header, so you don’t have to declare them.

void MCU_init()
{

RCON = 0 ;
INTCON = 0 ;
INTCON2 = 0b10000000 ; // PORTB pullups disabled
INTCON3 = 0 ;
PORTA = 0 ;
TRISA = 0b11111111 ; // all bits from port A as input
PORTB = 0 ;
TRISB = 0b11111111 ; // B as input
PORTC = 0 ;
TRISC = 0b11_000000; // port C<7-6> as input, other pins as output
OSCCON = 0b01110010 ; // internal clock 8Mhz - see also config bits
PIE1 = 0 ; // disable all interrupts

}

5

2.4 Delay function

This program needs a delay to control the blinking frequency. The most simple way to do it is an
empty loop (in fact, we need 2 nested loops because processor is too fast). The following function
provides a 0.1× i delay (ie: for a 1s delay, call delay(10)). The delay is absolutely not accurate,
but it doesn’t matter for this application.

void delay(uint8_t i)
{

uint16_t k ;
for(; i ; --i)

for(k = 15000UL ; k ; --k) ;
}

2.5 Main function

Finally, here is the main() function. As you can see, main() returns an int, and you may wonder
why, because -in this application- main() never returns. The reason is simple: the ISO standard1

explicitely specify than main() should return an int.

I use here two macros (defined in <macro.h>): BIT_1(PORTC, 0) sets bit 0 of PORTC, and
BIT_TOGGLE(PORTC, 0) toggles it.

int8_t main()
{

// MCU registers inits
MCU_init() ;

BIT_1(PORTC, 0);
for(;;)
{

delay(10) ;
BIT_TOGGLE(PORTC, 0) ;

}
return 0 ;

}

Despite the apparent complexity of BIT 1 and BIT TOGGLE, the resulting code is very simple.
Here is this code (blink1.slb).

;<+C18_main> int main()
C18_main
;
; MCU_init() ;
ICALL C18_MCU_init

;
; ((PORTC) |= (1<< (0)));
bsf C18_PORTC,0,0

; for(;;)
L18_blink1_main_10
; {
; delay(10) ;
movlw 10
movwf PREINC0,0

1ISO/IEC 9899 standard, section 5.1.2.2.1 ”It shall be defined with a return type of int ... ”

6

ICALL C18_delay
movf POSTDEC0,F,0 ; clean stack

; ((PORTC) ^= (1<< (0))) ;
btg C18_PORTC,0,0

; }
L18_blink1_main_12
IBRA L18_blink1_main_10

L18_blink1_main_11
;
; return 0 ;
clrf R0,0

; }
L18_blink1_main_9
return 0

;<?C18_MCU_init>
;<?C18_PORTC>
;<?C18_delay>
;<-> int main()

2.6 How to build the application

It is very easy to use cpik from pikdev : just open a new C project, choose a processor and
add the file blink1.c to this project. Then hit F5 (or select the assemble function from menu or
toolbar). If you get no error, the hex file is now ready to be transfered to your board (F6 displays
the programmer window).

From command line, this is not difficult too.

1. Compile blink1.c
cpik -c -p p18f2525 blink1.c
cpik generates the file blink1.slb

2. Link the application
cpik -o blink1.asm -p p18f2525 blink1.slb
the ”linker part” of cpik links together the ”object” file cpik.slb and the run-time library
(/usr/share/cpik/<version>/lib/rtl.slb). We do not need another library here. The
generated file is blink1.asm.

3. Build blink1.hex from blink1.asm.
gpasm -L -o blink1.hex -w 2 blink1.asm
The code is around 54 bytes long, including startup stuff.

7

3 Turorial #2 - Blinking LED with variable speed

Suppose we need to tune the blinking frequency of the LED. For this purpose, we add a minimal
3 buttons keybord to our experimentation board (see figure 4). It is composed of 3 switches,
connected to pins RB<0-2> of the microcontroller. Resistors R1, R2 and R3 pull the port pins up
to 5V. When a key is pressed, pin voltage is forced to GND, so the buttons are active-low.

The capacitors C1, C2, C3 just avoid the switches to bounce. They are not needed if you use
very good quality switches or if you implement a software debounce. Resistors could be ommited
if you connect the keybord to a port which have pull-up capability. This is the case of port B, but
we do not use this feature here.

Figure 4: Mini keyboard for tutorial #2

3.1 A naive approach

To change the blinking frequency of the LED we simply put the needed delay in the variable d.
The keyboard is sampled in the main loop. If a key is found to be pressed (bit == 0) the variable
d is changed as following:

• key 0 : d is incremented, (blinking slows down).

• key 1 : d is reset to default value (10)

• key 2 : d is decremented, (blinking speeds up).

The macro BIT_TST() apply a mask to its parameter and return 0 if the bit is not set, else a
non-nul value considered as true. Please see the macros.h header file for details.

int8_t main()
{

uint8_t d = 10 ;
// MCU registers inits
MCU_init() ;

BIT_1(PORTC, 0);

8

for(;;)
{

delay(d) ;
BIT_TOGGLE(PORTC, 0) ;
if(!BIT_TST(PORTB, 0))

++d ;
else if (!BIT_TST(PORTB, 1))

d = 10 ;
else if (!BIT_TST(PORTB, 2))

--d ;
}

return 0 ;
}

This implementation ”works” but is really poor because:

1. The buttons are sampled when the delay is finished, so if the delay is very long, the keyboard
is inactive most of the time

2. When the d variable is decremented from 0, it is set to 0xFFFF (216 − 1), so you must wait
about 1.82 hours before being able to change the speed again. Not really handy.

3.2 Using interrupts: a better approach

I plan here to use interrupts to update the delay variable. I suppose that the delay loop must be
resetted each time the delay is changed, so the change will be immediately taken into account. For
this pupose the delay variable (blink delay) becomes global. During delay loop, blink delay is
continuously sampled and loop is aborted if its value changes.

uint8_t blink_delay = 10;

void delay(uint8_t i)
{

uint16_t k ;
uint8_t my_delay ;
for(my_delay = blink_delay; i ; --i)

for(k = 5000 ; k ; --k)
if(blink_delay != my_delay) return ; // abort delay loop

}

PIC18 are able to generate an interrupt when the state of some input pins of port B change.
This feature must be configured as following before use: we must decide if interrupt is generated
during low to high or high to low transitions, and if interrupts have low or high priority. Please
see the PIC18F2525 data sheet for details.

As buttons are active-low, the following code configures the port to emit an interrupt when a
high to low transition occurs.

After this configuration, high priority interrupts are enabled by the UNMASK_HI_PRI_IT macro,
which is defined in <interrupt.h>. Please see the ”Interrupt Service Routine” and ”Disabling
and enabling interrupts” sections of cpik documentation for details.

The rest of main() function doesn’t contain any code to manage keyboard: this point becomes
the job of Interrupt Service Routine.

#include <interrupt.h>

9

int8_t main()
{

// MCU registers inits
MCU_init() ;

// INT0 on falling edge
BIT_0(INTCON2, INTEDG0) ;
// INT1 on falling edge
BIT_0(INTCON2, INTEDG1) ;
// INT2 on falling edge
BIT_0(INTCON2, INTEDG2) ;

// set IT hi priority
BIT_1(INTCON3, INT1P) ;
// set IT hi priority
BIT_1(INTCON3, INT2P) ;
// note: INT0 has always hi priority

// enable INT0
BIT_1(INTCON, INT0E) ;
// enable INT1
BIT_1(INTCON3, INT1E) ;
// enable INT2
BIT_1(INTCON3, INT2E) ;

// enable hi pri interrupts
UNMASK_HI_PRI_IT ;

BIT_1(PORTC, 0);
for(;;)
{

delay(blink_delay) ;
BIT_TOGGLE(PORTC, 0) ;

}
return 0 ;

}

For PIC18 devices, interrupts may have either low or high priority. Low priority Interrupt
Service Routines (ISR) can be interrupted by high priority interrupts, but high priority ISR cannot
be interrupted.

With cpik, ISRs must be named lo_pri_ISR or hi_pri_ISR, depending on the kind of inter-
rupts they serve. ISR must preserve informationnal context. cpik provides two macros for context
saving: SAVE_REGS and RESTORE_REGS.

The following routine test interrupt flags located in INTCON and INTCON3 in order to detect
where the interrupt comes from. Interrupt flags are cleared before the ISR returns.

Note the __interrupt__ nonstandard keyword which insures that function is considered as an
ISR.

__interrupt__ void hi_pri_ISR()
{

SAVE_REGS ; // defined in interrupt.h

if (BIT_TST(INTCON, INT0F))

10

{
++blink_delay; // key 0 -> slow down blinking
BIT_0(INTCON, INT0F) ;

}
else if (BIT_TST(INTCON3, INT1F))
{

blink_delay = 10; // key 1 -> set speed to default
BIT_0(INTCON3, INT1F) ;

}
else if (BIT_TST(INTCON3, INT2F))
{

--blink_delay ; // key 2 -> speed up blinking
BIT_0(INTCON3, INT2F) ;

}

RESTORE_REGS ;
}

Thanks to interrupts, keyboard is always responsive and blinking frequency can now be changed
at any time. The ”roll from 0 to 0xFFFF” issue is still here but can be easily fixed.

11

4 Tutorial #3 - Using an HD44780 compatible LCD display

This tutorial will show how to use an HD4478 based LCD display from cpik. We will use a
pre-defined library (lcd.slb) , wich is written in assembly language. You can copy this library
(located in /usr/share/cpik/<version>/lib/) to your working directory, or reference it directly
at link time, using the -L option.

The LCD display is used in 4 bit mode (ie: each byte is transmitted to the display as two
nibbles). this solution allows to use only 6 bits from port B, as showed in figure 52. However, these
details are totally hidden by the API provided by the LCD library.

Figure 5: How to connect an LCD display in 4 bit mode

4.1 Using the LCD library API

Our goal is just to set up the display, and to display an ”hello” message.

Since the display is connected to port B, we need to update the initialization routine used for
previous examples to configure all pins of port B as output.

void MCU_init()
{

RCON = 0 ;
INTCON = 0 ;
INTCON2 = 0b10000000 ; // PORTB pullups disabled
INTCON3 = 0 ;
PORTA = 0 ;
TRISA = 0b11111111 ; // all bits from port A as input
PORTB = 0 ;
TRISB = 0b00000000 ; // B as output
PORTC = 0 ;
TRISC = 0b11111111; // port C as input

OSCCON = 0b01110010 ; // internal clock 8Mhz (no crystal) see also config bits

2Since RB6 and RB7 are used for ISP operations, the port B is however fully used.

12

PIE1 = 0 ; // disable all interrupts
}

The main routine is easy to write : after CPU initializations, we call the LCD initialization
routine, lcd init(). The parameter 15 is just used by an internal delay routine, and is convenient
for a 8MHz clock CPU. Please see the cpik documentation if you use another clock speed. This
parameter is not critical, but depends on the the display you use. If your display does not work
properly, try to increase this value.

int8_t main()
{

// MCU registers inits
MCU_init() ;

lcd_init(15) ; // delay loop value for 8MHz clock

lcd_clear() ; // erase display

lcd_move(0x46) ; // go to 2nd line, 6th column

lcd_puts("Hello LCD !") ; // my message

for(;;) ; // infinite loop

return 0 ;
}

The 0x46 value corresponds to the physical address of the cursor target location on the display.
This kind of specification is not very handy, because it depends on line an column numbers, but
also on the kind of display you use (8, 16, 20, 24 or 40 characters per line displays use different
addresses).

To make the code less dependent on the physical display, the following routine returns the
cursor address of the line/col location.

#define LCD_COLS 20

uint8_t lcd_cursor_addr(uint8_t line, uint8_t col)
{
#if LCD_COLS == 16

static uint8_t laddrtab[4] = { 0x0, 0x40 , 0x10, 0x50 } ;
#elif LCD_COLS == 20

static uint8_t laddrtab[4] = { 0x0, 0x40 , 0x14, 0x54 } ;
#elif LCD_COLS == 24

static uint8_t laddrtab[4] = { 0x0, 0x20 , 0x40, 0x60 } ;
#else

#error "LCD_COLS should be either 16 20 or 24"
#endif

return laddrtab[line]+ col ;
}

It is now easy to convert line/column coordinates to LCD addresses, assuming the first line is
the line 0.

You can now replace lcd_move(0x46) ; with a more readable lcd_move(lcd_cursor_addr(1,5)) ;
statement.

13

4.2 Using the stdio API

Sometime, using the standard printf() function is the most handy way to output a text. This
example shows a pretty complicated way to write the ”Hello LCD” text.

The most important point is the following: before using printf(), you must redirect the output
of printf() to the LCD device, by using the set_putchar_vector() routine. The output vector
remains active as long as you do not change it again.

int8_t main()
{

// MCU registers inits
MCU_init() ;

lcd_init(15) ; // 8 MHz clock
// redirect standard output to LCD
set_putchar_vector(&lcd_putchar) ;

lcd_clear() ;

lcd_move(lcd_cursor_addr(1, 5)) ;

printf("Hello %c%s", ’K’+1, "CD !") ;

for(;;) ;
return 0 ;

}

14

5 Tutorial #4 - A digital Voltmeter

This section shows how to build a simple, but effective voltmeter. We will use the analog to digital
converter included in most PIC18 devices.

For testing purpose, a voltage source may be provided by an ajustable resistor, wired as voltage
divisor, as shown in figure 6. Microchip recommends to use a voltage source with an output
impedance less than 2KΩ, so a 470Ω adjustable is OK.

If you plan to use a high impedance voltage source, you must add a buffer. A simple and
reliable buffer can be built with an operational amplifier, wired as voltage follower, as also shown
in figure 6. The same amplifer could also be used to apply a gain to the measured voltage.

The 22nF (or more) capacitor allows to minimize effects of poor quality ajustable, and acts as
an ”energy tank” if fast AD conversion is needed on hi-impedance sources.

Figure 6: Unbuffered (on RA0) and buffered (on RA1) voltage sources for AD converter

5.1 Analog to Digital module configuration

We plan to use the A/D module on channel 0 (AN0), which corresponds to pin RA0 of the 18F2525
device. For simplicity, we will use the module in polling mode (ie: without interrupts).

The A/D module needs two voltage references: VREF+ and VREF-. When the converted
voltage is equal to VREF-, the converter returns the minimum value (ie: 0) and when the voltage
is equal to VREF+, the converter returns the maximum value (ie: 1023). Voltages outside these
limits are illegal.

In order to get optimal results, a very precise and constant voltage reference is needed. Inte-
grated chips such as LM336 or REF25Z are convenient for that purpose. For simplicity, we use
GND as VREF-, and VCC as VREF+, and we will suppose that VCC is exactly 5V3.

The A/D module works in two stage. The first one is the acquisition. It consists to charge
an internal capacitor with voltage source. When charged, the capacitor is disconnected from the
source and connected to the converter itself. This capacitor is a ”voltage memory” which retains
the voltage value during conversion. After the ”sample and hold” stage, the conversion stage
begins. Because the hold capacitor is not perfect (and also because converter sink a little current),
its charge tends to vanish with time and voltage to decrease. For this reason, the conversion process
must be as fast as possible.

3As this is rarely the case, do not use this solution if accuracy is needed.

15

When conversion is finished, a special bit is reset, to tell the program that a result is available.

The A/N module can be initialized as following:

1. Choose VREF+ and VREF-,

2. choose which pins are usable as analog inputs,

3. select an acquisition time which ensure a full charge of the sample and hold capacitor,

4. select conversion clock, as fast as possible (but not too fast for the converter capabilities),

5. disable interrupts,

6. enable A/D conversion subsystem.

Please refer to Microchip documentation for details about ADCONx registers.

void AD_init()
{

// AN0=analog input, other pins=digital , VREF- =GND, VREF+ = VCC
ADCON1 = 0b00_00_1110 ;
// AD conv freq = Fosc/32 (OK for 8 Mhz device clock), acquisition time = 16 TAD,
ADCON2 = 0b10_110_010 ;
/* RA0..RA7 as inputs */
TRISA |= 0b11111111 ;

/* no AD conversion termination interrupt */
BIT_0(PIE1, ADIE) ;
/* enable AD */
BIT_1(ADCON0, ADON) ;

}

5.2 Analog to Digital conversion

The conversion process can be summarized as follows:

1. Load ADCON0<5-2> with channel number.

2. set ADCON0<GO> bit, to start the acquisition process (sample and hold, then conversion)

3. wait for ADCON0<GO> bit to be resetted by hardware (this is done by a simple loop polling
the bit)

4. return the value of ADRESL/ADRESH register

This function uses the ADRESL (0xFC3) and ADRESH (0xFC4) registers as a 16 bit pair. For
this purpose, we just have to declare and external variable ADRESHL at address 0xfc3.

uint16_t ADRESHL@0xfc3 ;

uint16_t AD_get(uint8_t channel)
{

// choose channel
ADCON0 &= 0b11000011 ; // mask channel bits
ADCON0 |= (channel << 2) ; // then set channel number

16

// start measurement
BIT_1(ADCON0, GO);

while(BIT_TST(ADCON0, GO)) ; // wait for conversion to be done

// CAUTION: symbol ADRES exported by p18f2525.h is an unsigned int8
// use ADRESHL variable to get the result as an unsigned int16
return ADRESHL ;

}

5.3 Voltage display

The value AD returned by the A/D converter must be converted to volts before being displayed.

V oltage =
V REF + − V REF−

1023
×AD =

5V

1023
×AD

With the current configuration, the resolution of the converter is approximativly 0.005V , so it
seems reasonable to display voltages with 2 digits after the decimal point.

Since cpik does not provide a floating point type yet, the conversion must be done in 10mV
units, using 16 bit unsigned integers.

V oltage =
500
1023

×AD

To avoid rounding errors, multiplication must be computed before division. Unfortunatly, this
will lead to overflow in 16 bit mode, because 500×1023 is not representable with a 16 bit unsigned
integer. For this reason, one can use the following approximation:

V oltage =
50
102

×AD

which leads to an acceptable 0.29% error.

Since version 0.5, cpik supports 32 bit integers, so a better solution is to perform the conversion
with 32 bit arithmetic. The 32 bit result can be casted back to 16 bit variable without any risk,
because it cannot overflows.

After conversion, the voltage must be displayed like a floating point value, with two digit
following the decimal point. Note that an uint16 t data is an unsigned long, so we have to use
a ”%lu” format specification.

void display_voltage(uint16_t v)
{

uint16_t vi = v / 100UL ;
printf("%lu.", vi) ;
vi = (v % 100UL) ;
if (vi < 10UL) putchar(’0’) ;
printf("%lu v", vi) ;

}

Finally, here is the main() function. Thanks to implicit type promotion, the voltage conversion
is done using 32 bit arithmetics, despite the fact voltage is a 16 bit variable:

17

voltage = voltage * 500ULL / 1023 is indeed equivalent to
voltage = (uint16_t)((uint32_t)voltage * 500ULL / (uint32_t)1023)

int8_t main()
{

uint16_t voltage ;

// MCU registers inits
MCU_init() ;
// A/D module initialization
AD_init() ;

lcd_init(15) ; // 8 MHz clock
set_putchar_vector(&lcd_putchar) ;
lcd_clear() ;

for(; ;)
{

voltage = AD_get(0) ;
// convert to 10 mV units
voltage = voltage * 500ULL / 1023 ;
lcd_move(lcd_cursor_addr(0, 0)) ;
display_voltage(voltage) ;

}

return 0 ;
}

5.4 Voltmeter with bargraph display

To make our display more user friendly, we now display the voltage in an analog manner, with a
bargraph, as presented in figure 7.

For this purpose, we need special characters which are not available in the LCD display ROM.
Hopefuly, the HD44780 allows to upload 10 user-defined characters. Each new character must be
defined in a 5x8 matrix. The characters we need must be 5, 4, 3, 2 or 1 pixels wide. By joining
together 10 such characters, we can display an acceptable ”analog” bar.

Here is the characters definition: each character is coded by 8 bytes, each byte being the image
of the one line of the matrix. All character definitions are grouped in a static array of arrays, local
to the initialization routine define_bargraph_chars()4.

void define_bargraph_chars()
{

/* user-defined chars for progress bar */
static char chr[][8] =

{
{0} , // 0 bar
{ 0, 0, 0b00010000, 0b00010000 , 0b00010000, 0b00010000, 0, 0 }, // 1 bar
{ 0, 0, 0b00011000, 0b00011000 , 0b00011000, 0b00011000, 0, 0 }, // 2 bars
{ 0, 0, 0b00011100, 0b00011100 , 0b00011100, 0b00011100, 0, 0 }, // 3 bars
{ 0, 0, 0b00011110, 0b00011110 , 0b00011110, 0b00011110, 0, 0 }, // 4 bars
{ 0, 0, 0b00011111, 0b00011111 , 0b00011111, 0b00011111, 0, 0 } // 5 bars

} ;

4The advantage of this solution is to make impossible any identifier collision with a global entity.

18

Figure 7: Voltage display, with bargraph

uint8_t i ;
for(i = 0 ; i < 6U ; ++i)

lcd_define_char(i, chr[i]) ;
}

The voltage_bar() routine displays the bar corresponding to the ”v” voltage. As maximum
voltage is 5.00V and bar is 10 characters wide, each character of this bar corresponds to a 0.5V
increment. As characters are 5 pixels wide, each pixel represents 0.1V.

The characters coding has been choosen as following: character with code 0 represents 0.0V ,
character 1 represent 0.1V, etc.

The display algorithm decomposes the voltage in 0.5V slices, and displays character 5 (ie: 5
pixels) as many time as necessary to represent each slice. The rest of the decomposition is either
0.4V, 0.3V, 0.2V, 0.1V or 0.0V, so we just need to display the proper character to complete the
bar. Finally, a sequence of blanks is displayed up to 10 characters.

void voltage_bar(uint16_t v)
{

uint8_t n = 0 , step, charcod ;

// displays progress bar
for(step = 50U, charcod = 5 ; step >= 10U ; step -= 10U, --charcod)
{

while(v >= step)
{

printf("%c", charcod) ;
v -= step ;
++n ;

}
}
// fill with spaces, up to 10 characters
for(; n < 10U ; ++n) printf(" ") ;

19

}

The main function is very simple :

1. Initialisations,

2. user-defined characters upoload and display erase,

3. data acquisition,

4. data to voltage conversion,

5. numeric display,

6. analog display,

7. repeat process from step 3

int8_t main()
{

uint16_t voltage ;

// MCU registers inits
MCU_init() ;
AD_init() ;

lcd_init(15) ; // 8 MHz clock
set_putchar_vector(&lcd_putchar) ;
define_bargraph_chars() ;

lcd_clear() ;

for(; ;)
{

voltage = AD_get(0) ;
// convert to 10 mV units
voltage = voltage * 500ULL / 1023 ;
lcd_move(lcd_cursor_addr(0, 0)) ;
display_voltage(voltage) ;
lcd_move(lcd_cursor_addr(0, 8)) ;
printf("[") ;
voltage_bar(voltage) ;
printf("]") ;

}

return 0 ;
}

6 Contact

Please send remarks, suggestions, topic requests or error reports to: alain.gibaud@free.fr

20

