
IUPAC International Chemical Identifier (InChI)

InChI version 1, Software version 1.06

Release Notes
Last revision date: December 20, 2020

Release Notes
Summary
Security-related fixes
Other fixes
New and updated features

Support of pseudo element (Zz) atoms
Modifications in support of regular single-strand polymers
InChI API
Intel TBB scalable memory allocator support

Outline
How to use

Other
Structure perception option LooseTSACheck
New timeout switch WMnumber
Changes to inchi-1 executable

Testing
Regression testing
InChI round-trip test

Known issues
Distribution package

Binaries
Source codes and demo programs
Other

Acknowledgements

Summary
This document introduces InChI Software version 1.06 release.

The current version of InChI Identifier is 1; the current version of the InChI software is 1.06 which
replaces the previous version 1.05.

InChI Software v. 1.06 includes several additions and modifications to previous versions; it is a
combination of “bugfix release” and “feature release”.

What is new:

security-related bugfixes;
a number of other bugfixes and minor improvements;
experimental support for pseudo element (Zz, or "star") atoms;
modified experimental support of InChI/InChIKey for regular single-strand polymers (explicit
pseudo atoms are used);
minor update to InChI API Library;
optional support of Intel(R) Threading Building Blocks scalable memory allocators;

af://n3
af://n6

several convenience features (for example, ability to use less strict rules for assigning
tetrahedral stereo in large rings) and corresponding software options.

A brief description of novel and changed features is given below. For more details, please check
the documents included in this distribution (all in PDF format):

CHANGELOG (list of changes relative to the previous release)
KNOWNISSUES (list of known issues)
LICENCE (IUPAC/InChI Trust software licence)
InChI_UserGuide (software user's guide)
InChI_API_Reference (programmer's reference for API library)
InChI_TechMan (technical manual on InChI identifier)

Security-related fixes
A number of fixes have been made to eliminate issues which may occasionally lead to security
compromise.

Since v. 1.05 release, there appeared several requests concerning possible problems. A typical
scenario is that invalid input (namely, an input which looks like a normal Molfile or InChI string,
but actually contains invalid fragments or garbage of any origin) in some circumstances may
cause InChI software memory corruption and crash, instead of proper behavior of issuing
diagnostic message and rejecting such an input. Theoretically, such crashes may compromise
security of services which internally use InChI software (if these services, for any reason, do not
check themselves their inputs for possible invalidity/malicious nature). As InChI Software got wide
popularity and became a backend engine used internally by many production environments and
services, these issues could not be neglected.

In particular, fixed were:

20 issues reported by Google AutoFuzz project;
103 issues reported by Google’s Ian Wetherbee;
19 issues reported by google/oss-fuzz;
several similar issues reported by Cure53 company;
number of several similar or less similar issues from own backlog or user reports (in
particular, reported by Andrew Dalke and by Burt Leland issue of improper handling H
isotope with abnormally high mass difference).

Other fixes
Several issues that related to core InChI functionality have been fixed in v. 1.06 pre-release.

In particular, there were:

Fixed 2 "no-calc" issues.
These are the cases where InChI Software v. 1.05 could not produce InChI string for given
input Molfile.
Fixed 1753 renumbering issues.
These are the cases where InChI strings produced by InChI Software v. 1.05 change upon
renumbering atoms of input Molfiles. Mostly they are related to the bug in normalization for
some structures containing acidic hydroxy group at cationic heteroatom center.

Some similar issues still remain active. For more details see the section "Known issues" below.

af://n41
af://n57

Several minor bugs are fixed, for example:

bug of not recognizing olean-like spiro chirality;
bug in polymer CRU canonicalization at comparing seniority of 'junior members' for
various possible options of caps attachment;
bug for polymers which may appear in multipliers in brutto formula;
several bugs in AuxInfo output (some general and some specific to IXA API);
critical race condition bugs pointed out by Karl Nedwed and by John Salmon;
bug which caused crash on reading some V3000-formatted large molecules.

For more information, see CHANGELOG document accompanying this distribution.

New and updated features

Support of pseudo element (Zz) atoms

Zz pseudoelement atom (“star atoms”) is a generic placeholder designating
undefined/unknown/variable nature entity.

Exact meaning of Zz atoms, as well as the rules of treating them, is up to application
chemist/programmer. One specific exception is a case of pair of Zz atoms surrounding polymeric
CRU (constitutional repeat unit), that is, sitting at the ends of bonds crossing CRU brackets. These
Zz atoms are considered as undefined-nature end groups surrounding polymer repeat units and
are treated according to rules common in polymer chemistry, see below.

Zz is considered an univalent pseudo element (so Zz atoms are always terminal) having the least
possible InChI seniority (that is, Zz atoms will always have the maximal available canonical
numbers). The stereo at the atoms connected to Zz is disabled by default (may be enabled by
option SAtZz).

On input, pseudo element may be represented by either symbol “Zz” or symbol ‘*’ ; output always
contains Zz as * is reserved in InChI for other purposes

By default, usage of Zz atoms is allowed for handling polymers (which requires specifying
Polymers switch of inchi-1/API).

To allow usage of Zz atoms out of polymer context, option NPZZ should be specified. Shown
below is the example of using non-polymeric Zz for adenosinediphosphoribosyl group, structure
CHEBI:22259

af://n82
af://n83

For the details of API and inchi-1 options related to handling pseudo atoms, please consult
UserGuide and InChI_API_Reference documents included in this distribution.

Please note that caution is necessary while using Zz atoms due to inherently indefinite nature of
pseudo element. The consistency of Zz interpretation is by no means guaranteed, as it is by
design mostly left to user/application programmer, and various side effects may appear. To
emphasize this, appearance of Zz atoms, both in non-polymer and polymer context, is
considered experimental feature and corresponding InChI receives prefix "InChI=1B".

Modifications in support of regular single-strand polymers

Polymer treatment in v. 1.06 is updated to extend functionality and accommodate Zz atoms, as
well as to fix bugs and to account for users feedback.

Zz (“star”) atoms at the ends of bracket-crossing bonds are now considered, as is common to
polymer chemistry, as the end groups of undefined nature. Consequently, their presence makes
InChI algorithm to perform so-called CRU (Constitutional Repeat Unit; aka SRU, Structural Repeat
Unit) “frame shift analysis” to ensure canonicalization of repeat unit(s) in infinite chain. Due to
frame shift, bracket-crossing bonds may be reattached to CRU atoms resulting in changed
bonding scheme.

Actually, Zz atoms were partially introduced in v. 1.05 for handling polymers, but their treatment
has been implemented internally and expressed in “latent” mode: possible reattachment and
presence of Zz atoms were “hidden” in InChI string and become evident only on back-conversion
of InChI to structure.

As in InChI v. 1.06 “indefinite-nature” caps of CRU is represented explicitly by Zz atoms, frame shift
(if any) occurs upon generation of InChI from structure, so that bonding scheme of input molecule
is corrected to adjust to canonical CRU form.

InChI=1B/C15H22N5O13P2Zz/c16-12-7-13(18-3-17-12)20(4-19-7)14-10(23)8(21)5(31-

14)1-29-34(25,26)33-35(27,28)30-2-6-9(22)11(24)15(36)32-6/h3-6,8-11,14-15,21-

24H,1-2H2,(H,25,26)(H,27,28)(H2,16,17,18)/t5-,6-,8-,9-,10-,11-,14-/m1/s1

InChIKey=HGZGKBRIZICMCZ-UQZBLMPMBA-N

af://n94

For example, all the structures

are converted to the same canonical structure with explicit Zz atoms (appeared as “Zz” in InChI
string but shown as common to chemists asterisk on the scheme):

which results in the same identifier for all inputs, namely:

The changed approach means that InChI strings for all polymers, containing CRU with indefinite-
nature caps, do change.
Thus, for the above example, v. 1.05 identifiers were:

To retain compatibility with previous version, the new option Polymers105 added. It instructs the
API/inchi-1 to treat polymer data as in v. 1.05, that is, hide explicit Zz atoms. It is planned that this
option will be eliminated in future, leaving explicit-pseudo atoms approach the sole mode.

Some limitations of polymer analysis were eliminated.

Canonicalization of CRU containing inner repeats may now include removal of repeats by folding
to the "least repeating unit".
A simple example:
-[-CH2CH2-]n-

is folded to
-[-CH2-]n- .
This is not the default mode of action (as many chemists would not expect that polyethylene is
converted to polymethylene); folding is activated by specifying new software option FoldCRU
which works for both inchi-1 and API (another new option in v. 1.06 is NoFrameShift which turns
off frame shift) .

Copolymers represented as combination of source-based and structure-based subunits are now
allowed.

 InChI=1B/C3H6OZz2/c1-3(2-5)4-6/h3H,2H2,1H3/z101-1-4(6-4,5-2)

 InChIKey=HWXRSRVZRSEKDJ-IDWFELBQBA-N

InChI=1B/C3H6O/c1-3-2-4-3/h3H,2H2,1H3/z101-1-4(2,3,2,4,3,4)

InChIKey=GOOHAUXETOMSMM-KUWDYTNTBA-N

InChI API

InChI Software v. 1.06 includes minor update of INCH API.

Added are the following procedures :

The behavior of several API procedures is slightly changed to improve their usability and account
for newly added features.

Also improved are some inner details of API, in particular, performance of IXA memory allocations
is enhanced.

Note that InChI “modularized version of old” API (the set of functions using INCHIGEN object) is
now frozen. These procedures still work and are retained for compatibility reasons, but will not
receive further development.

For the details of current InChI API, please consult InChI_API_Reference document included in this
distribution.

Intel TBB scalable memory allocator support

InChI Software v. 1.06 provides optional support of Intel(R) Threading Building Blocks (TBB)
scalable memory allocators (SMA) which may improve performance of InChI library in multi-
threading program environment.

Outline

Upon using InChI library in multi-threading environment, memory allocation can become a
serious performance bottleneck due to locking issues. As threads may compete for a global lock
related to a single global heap, program’s behavior is not scalable and speed may even degrade if
number of processor cores increases. Scalable memory allocators resolve the issues by relying on
more sophisticated data structures/logics.

Intel TBB is free software package available for both Windows and Linux, licensed under the
Apache License, Version 2.0, see file LICENSE in TBB sub-directory of distribution (there is also a
commercial counter-part; consult https://www.threadingbuildingblocks.org).

TBB offers a “proxy” method to automatically replace C functions for dynamic memory allocation
with its own scalable memory allocators to largely avoid contention (there exist other, non-
automatic ways of using TBB allocators, which we do not touch).

This method may optionally be used with InChI Software library and, in some cases, may provide
performance gain (but your mileage may vary, so try and check).

For additional info on Intel scalable memory allocator and Intel TBB in general, please visit https://
www.threadingbuildingblocks.org/documentation
 or consult print literature, e.g., open access book “Pro TBB. C++ Parallel Programming with
Threading Building Blocks” by Michael Voss, Rafael Asenjo, and James Reinders: https://link.spring
er.com/book/10.1007/978-1-4842-4398-5

IXA_INCHIBUILDER_SetOption_Timeout_Milliseconds()

IXA_MOL_GetBondOtherAtom()

IXA_MOL_ReserveSpace()

IXA_MOL_CreatePolymerUnit ()

IXA_MOL_SetPolymerUnit ()

IXA_MOL_GetPolymerUnitId()

IXA_MOL_GetPolymerUnitIndex()

af://n112
af://n120
af://n122
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/documentation
https://link.springer.com/book/10.1007/978-1-4842-4398-5

How to use

Use SMA-aware versions of libinchi dynamic libraries (libinchi.dl l under Windows and
libinchi.so under Linux), either supplied with this distribution or compiled from sources.

To run the application calling libinchi, ensure that it has access to Intel TBB SMA dynamic library.

Under Linux, the easiest way is to load SMA libraries at application load time using the
LD_PRELOAD environment variable (another option is by linking the main executable file with the
proxy library). As loader must be able to find the proxy library and the allocator library, one may
include the directory with libraries in the LD_LIBRARY_PATH environment variable or add it to
/etc/ld.so.conf .

Example:

Under Windows, the simplest way is to copy tbbmalloc_proxy.dll and tbbmalloc.dll to the
directory containing program and libinchi.dll. Alternatively, you may put directory containing SMA
library(-ies) to PATH environment variable. Note that the libraries for 32-bit and 64-bit Windows
are different, so be careful to properly match “bitness” of involved binaries.

Precompiled SMA-aware InChI library binaries are supplied in this distribution.

Intel TBB SMA library binaries are also supplied, for convenience, see packaging notes below (they
may also be downloaded from Intel TBB site).

As an alternative to using precompiled InChI library SMA-enabled binaries, you may build them.
For that purpose, uncomment the line

in the file mode.h and build l ibinchi.dll under Windows as usual, or build libinchi.so under
Linux using supplied makefile makefile_with_tbb .

Other

Structure perception option LooseTSACheck

A new InChI structure-perception (i.e., available for generation of Standard InChI) option
LooseTSACheck relaxes the strictness of tetrahedral stereo ambiguity check, for in-ring atoms, thus
getting stereo descriptor instead of undefined mark ‘?’.

It accounts for now common case of large molecules/large cycles, drawn and then automatically
'cleaned' by chemoinformatics software, see the example below.

export

LD_PRELOAD="/opt/intel/compilers_and_libraries_2020.1.217/linux/tbb/lib/intel64_

lin/gcc4.8/libtbbmalloc_proxy.so.2

/opt/intel/compilers_and_libraries_2020.1.217/linux/tbb/lib/intel64_lin/gcc4.8/l

ibtbbmalloc.so.2"

./mol2inchi chembl_26.sdf -Threads:4 -Perthread:1024 -NoWarnings -AuxNone -Key

>/dev/null 2>m2i-4-TBB.log

#define USE_TBB_MALLOC 1

af://n128
af://n140
af://n141

Figure 1. Auto-cleaned by drawing software large-ring molecule may get undefined stereo ‘?’
mark(s) due to too strict InChI’s tetrahedral stereo ambiguity check. Option LooseTSACheck
fixes this issue and produces definite stereo descriptor.

The option is available for inchi-1 executable and InChI API, see "User's Guide" and "InChI API
Reference", resp.

New timeout switch WMnumber

New convenience switch WMnumber is added (already available one Wnumber sets value in
seconds).

It sets InChI calculation timeout in milliseconds (strictly requires long int number), thus adding
finer granularity which is necessary for long runs on multi-million-input datasets.

Changes to inchi-1 executable

Several convenience changes were made to inchi-1 executable.

For the details, please consult "UserGuide" document in this distribution.

Testing

af://n151
af://n155
af://n159

Dataset Different InChI's Different, %

Standard InChI

ChEMBL 0 0

PubChem Compound 6479 0.006

Non-standard InChI (FixedH RecMet)

ChEMBL 0 0

PubChem Compound 6479 0.006

Non-standard InChI (SLUUD)

ChEMBL 27 0.001

Regression testing

As there were several minor fixes/changes made after software release v. 1.05, to ensure
compatibility with previous release the new software has been extensively regression-tested
against standard and non-standard InChIs generated with v. 1.05 Software, in both Windows and
Linux environments, for the various datasets, with the various option combinations.

The difference in the results has been found extremely small, as is illustrated by the table below.

The datasets are ChEMBL v. 27 (1,941,411 records) and PubChem Compound (111,476,790
records, downloaded 2020-11-07), both downloaded from the respective sites.

 The differences are due to introduced bug fixes. For example, the difference in 27 InChI strings
out of 1,941,411 for ChEMBL v. 27 is due to v. 1.06 fix for bug of not recognizing olean-like spiro
chirality (seen if SLUUD option is active); the major part of difference in InChI strings for PubChem
Compound is due to v. 1.06 fix for "renumbering instability" bug.

InChI round-trip test

The success rate for conversion of InChI to structures was measured using Rtrip option of test_ixa
program or two-pass (structure to InChI followed by InChI to structure) execution of inchi-1. In this
round trip, InChIs generated from Molfile-format records were then used to restore structures
and re-create InChIs from those structures, via corresponding API calls; original and final InChIs
were then compared.

The representative results are shown in the table below.

The datasets are ChEMBL v. 27 (1,941,411 records) and PubChem Compound (111,476,790
records, downloaded 2020-11-07), both downloaded from the respective sites.

af://n160
af://n203

Dataset Success rate, %

Standard InChI

ChEMBL 99.98

PubChem Compound 99.92

Non-standard InChI (FixedH RecMet)

ChEMBL 99.98

PubChem Compound 99.89

Known issues
The currently known issues have been found through internal tests including ~100M compounds
of PubChem Compound and some other datasets, via multiple runs with different software
options and extensive atomic renumbering of input data.

The current issues include:

5 cases of "no-calc" issue (inability of Software to generate InChI string);
547 cases of "renumbering instability" (change of InChI string after renumbering of atoms in
molecule).

The previous v. 1.05 demonstrated higher number of issues. This v. 1.06 release fixes:

2 "no calc" cases;
1753 "renumbering instability" cases.

All the past and present issues are compiled, with corresponding PubChem CID numbers, in
KNOWNISSUES document accompanying this distribution.

Distribution package

Binaries

This package includes 'command line' InChI executable and InChI API Library binaries (32 and 64
bit versions are supplied for both Windows and Linux).

Also included is winchi-1.exe, a graphical Windows application (a 32 bit version which will also run
under 64 bit Windows).

The binaries are placed according the following tree.

INCHI-1-BIN

 windows

 32bit
 winchi-1.exe InChI graphical Windows application
 inchi-1.exe InChI stand-alone command line executable, 32 bit
 dll
 libinchi.dll InChI dynamic-link library, 32 bit

af://n230
af://n246
af://n247

 with_tbb
 libinchi.dll InChI dynamic-link library, 32 bit, with Intel TBB memory
allocators support
 64bit
 inchi-1.exe InChI stand-alone command line executable, 64 bit

 dll

 libinchi.dll InChI dynamic-link library, 64 bit
 with_tbb

 libinchi.dll InChI dynamic-link library, 64 bit, with Intel TBB memory
allocators support
 linux

 32bit
 inchi-1.gz InChI stand-alone command line executable, 32 bit; gzipped

 so
 libinchi.so.1.06.00.gz shared library for InChI API, 32 bit; gzipped
 64bit
 inchi-1.gz InChI stand-alone command line executable, 64 bit; gzipped
 so
 libinchi.so.1.06.00.gz shared library for InChI API, 64 bit; gzipped

 Note that InChI stand-alone executable inchi-1 does not require dll/so libraries.

Source codes and demo programs

InChI Software binaries are placed in the file/directory INCHI-1-BIN.

Example data files are placed in the file/directory INCHI-1-TEST.

Documentation is placed in the file/directory INCHI-1-DOC.

InChI Software source codes are placed in the file/directory INCHI-1-SRC. This file/directory also
contains examples of InChI API usage, for C ('inchi_main', ‘mol2inchi’, ‘test_ixa’, see projects for MS
Visual Studio 2015 in 'vc14' and for gcc:Linux in ‘gcc’ subdirs) and Python 3 ('python_sample'). Also
supplied are InChI API Library source codes and related projects/makefiles.

The projects/makefiles necessary to build inchi-1 executable and demo programs are located
within corresponding directories, as well as the source codes specific for these apps (see below).
Note that a part of code which forms a common codebase is placed in the directory INCHI-1-
SRC/INCHI_BASE/src.

To ensure proper build of InChI applications/library, the directory structure below (a tree under
INCHI-1-SRC) should be preserved. Note also that though InChI library ‘libinchi’ may be build using
its own projects/makefiles (under INCHI-1-SRC/INCHI_API/libinchi/), it is automatically co-created
upon building of any demo program.

The details of source tree is as follow.

INCHI-1-SRC/INCHI_BASE

af://n262

 src
 C source files - common codebase used to build both InChI Library and inchi-1
executable

INCHI-1-SRC/INCHI_EXE

 bin
 directory where the binaries of inchi-1 executable are created/stored

 inchi-1

 a home directory for inchi-1 command-line executable

 src
 C source files specific for inchi-1 executable

 gcc
 gcc makefiles for inchi-1 executable (Linux, 64- and 32-bit)

 vc14
 MS VS2015 project for inchi-1 executable (Windows)

INCHI-1-SRC/INCHI_API

 bin
 directory where the binaries (of both library and all demo programs) are
created/stored

 bin2
 alternative directory where the binaries (of both library and all demo programs)
are created/stored

 libinchi
 a home for InChI Software Library
 src
 C source files specific for InChI Software Library
 gcc
 gcc makefiles for libinchi library (Linux so)
 vc14
 MS VS2015 project for libinchi library (Windows dll)

 demos
 a home for demo programs calling InChI library (API)
 inchi_main

 inchi_main demo program
 src
 C source files specific for inchi_main demo
 gcc
 gcc makefiles for inchi_main demo program (Linux)
 vc14
 MS VS2015 project for inchi_main demo program (Windows)

 mol2inchi

 mol2inchi demo program
 src
 C source files specific for mol2inchi demo program
 gcc

 gcc makefiles for mol2inchi demo program (Linux)
 vc14

 MS VS2015 project for mol2inchi demo program (Windows)

 test_ixa
 test_ixa demo program
 src
 C source files specific for test_ixa demo program
 gcc
 gcc makefiles for test_ixa demo program (Linux)
 vc14

 MS VS2015 project for test_ixa demo program (Windows)

 python_sample

 Python 3 source files specific for Python demo program

Please refer also to ‘readme.txt’ files in the directories.

Other

The documentation (Release Notes; InChI Technical Manual; InChI User Guide; InChI API
Reference) in PDF format is supplied in the INCHI-1-DOC section of this distribution package.

Test data are supplied in the INCHI-1-TEST file/directory.

Acknowledgements
We are grateful to many people and organizations who are continuously supporting InChI
development, in various forms.

Thanks are due to those who provided feedback, reported on problems and participated in
discussions, namely,
Gerd Blanke, Evan Bolton, Yulia Borodina, Steve Boyer, Cure53 team, Andrew Dalke, Igor Filippov,
Google AutoFuzz (oss-fuzz) team and Ian Wetherbee, Wolf-Dietrich Ihlenfeldt, Burt Leland, Peter
Linstrom, Daniel Lowe, John Mayfield, Karl Nedwed, Noel O'Boyle, Dmitry Redkin, John Salmon,
Roger Sayle, Paul Thiessen, Lutz Weber, Egon Willighagen, Andrey Yerin, and to many others who
specifically contributed to current release/testing, especially Dmitrii Tchekhovskoi.

af://n293
af://n296

	Release Notes
	Summary
	Security-related fixes
	Other fixes
	New and updated features
	Support of pseudo element (Zz) atoms
	Modifications in support of regular single-strand polymers
	InChI API
	Intel TBB scalable memory allocator support
	Outline
	How to use

	Other
	Structure perception option LooseTSACheck
	New timeout switch WMnumber
	Changes to inchi-1 executable

	Testing
	Regression testing
	InChI round-trip test

	Known issues
	Distribution package
	Binaries
	Source codes and demo programs
	Other

	Acknowledgements

